From WikiChip
Difference between revisions of "32 nm lithography process"

(Industry)
(Industry)
Line 4: Line 4:
 
== Industry ==
 
== Industry ==
 
TSMC cancelled its planned 32nm node process. Intel's 32 nm process became the first process to introduce the [[self-aligned via patterning]].
 
TSMC cancelled its planned 32nm node process. Intel's 32 nm process became the first process to introduce the [[self-aligned via patterning]].
 +
 +
{{nodes comp
 +
<!-- Intel -->
 +
| process 1 fab          = [[Intel]]
 +
| process 1 name        = P1268 (CPU) / P1269 (SoC)
 +
| process 1 date        = 2009
 +
| process 1 lith        = 193 nm
 +
| process 1 immersion    = Yes
 +
| process 1 exposure    = SADP
 +
| process 1 wafer type  = Bulk
 +
| process 1 wafer size  = 300 mm
 +
| process 1 transistor  = Planar
 +
| process 1 volt        = &nbsp;
 +
| process 1 delta from  = [[45 nm]] Δ
 +
| process 1 gate len    = &nbsp;
 +
| process 1 gate len Δ  = &nbsp;
 +
| process 1 cpp          = 112.5 nm
 +
| process 1 cpp Δ        = 0.63x
 +
| process 1 mmp          = 112.5 nm
 +
| process 1 mmp Δ        = 0.70x
 +
| process 1 sram hp      = 0.148 µm2
 +
| process 1 sram hp Δ    = 0.43x
 +
| process 1 sram hd      = 0.199 µm2
 +
| process 1 sram hd Δ    = &nbsp;
 +
| process 1 sram lv      = 0.171 µm2
 +
| process 1 sram lv Δ    = 0.45x
 +
| process 1 dram        = &nbsp;
 +
| process 1 dram Δ      = &nbsp;
 +
}}
 +
 +
 
{{scrolling table/top|style=text-align: right; | first=Fab
 
{{scrolling table/top|style=text-align: right; | first=Fab
 
  |Process Name
 
  |Process Name
Line 19: Line 50:
 
{{scrolling table/mid}}
 
{{scrolling table/mid}}
 
|-
 
|-
! colspan="2" | Common Platform <info>[[IBM]], [[Freescale]], [[AMD]]</info> !! colspan="2" | [[Intel]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[Samsung]] !! colspan="2" | [[Toshiba]] / NEC !! colspan="2" | Common Platform 2<info>[[IBM]], [[STMicroelectronics]], [[Frescale]], [[Chartered]], [[Infineon]]</info>
+
! colspan="2" | Common Platform <info>[[IBM]], [[Freescale]], [[AMD]]</info> !! colspan="2" | [[TSMC]] !! colspan="2" | [[Samsung]] !! colspan="2" | [[Toshiba]] / NEC !! colspan="2" | Common Platform 2<info>[[IBM]], [[STMicroelectronics]], [[Frescale]], [[Chartered]], [[Infineon]]</info>
 
|- style="text-align: center;"
 
|- style="text-align: center;"
| colspan="2" | || colspan="2" | P1268 (CPU) / P1269 (SoC) || colspan="2" | || colspan="2" | 32LP || colspan="2" | || colspan="2" |  
+
| colspan="2" | || colspan="2" | || colspan="2" | 32LP || colspan="2" | || colspan="2" |  
 
|- style="text-align: center;"
 
|- style="text-align: center;"
| colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2010  
+
| colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2010  
 
|- style="text-align: center;"
 
|- style="text-align: center;"
 
| colspan="2" | PDSOI || colspan="10" | Bulk  
 
| colspan="2" | PDSOI || colspan="10" | Bulk  
Line 29: Line 60:
 
| colspan="12" | 300mm
 
| colspan="12" | 300mm
 
|-
 
|-
! Value !! [[45 nm]] Δ !! Value !! [[45 nm]] Δ !! Value !! [[40 nm]] Δ || Value !! [[40 nm]] Δ || Value !! [[40 nm]] Δ || Value !! [[45 nm]] Δ
+
! Value !! [[45 nm]] Δ !! Value !! [[40 nm]] Δ || Value !! [[40 nm]] Δ || Value !! [[40 nm]] Δ || Value !! [[45 nm]] Δ
 
|-
 
|-
| 130 nm || 0.68x || 112.5 nm || 0.63x || 130 nm || 0.80x || 126 nm || 0.98x || 120 nm || 0.71x || 126 nm || 0.66x
+
| 130 nm || 0.68x || 130 nm || 0.80x || 126 nm || 0.98x || 120 nm || 0.71x || 126 nm || 0.66x
 
|-
 
|-
| ? nm || ?x || 112.5 nm || 0.70x || 100 nm || 0.83x || 100 nm || 0.85x || ? nm || ?x || 100 nm || ?x
+
| ? nm || ?x || 100 nm || 0.83x || 100 nm || 0.85x || ? nm || ?x || 100 nm || ?x
 
|-
 
|-
| 0.15 µm<sup>2</sup> || 0.41x || 0.148 µm<sup>2</sup> || 0.43x || 0.15 µm<sup>2</sup> || 0.62x || 0.149 µm<sup>2</sup> || ?x || 0.124 µm<sup>2</sup> || 0.64x || 0.157 µm<sup>2</sup> || 0.42x
+
| 0.15 µm<sup>2</sup> || 0.41x || 0.15 µm<sup>2</sup> || 0.62x || 0.149 µm<sup>2</sup> || ?x || 0.124 µm<sup>2</sup> || 0.64x || 0.157 µm<sup>2</sup> || 0.42x
 
|-
 
|-
| || || 0.199 µm<sup>2</sup> || || || || || || || || ||
+
| || || || || || || || || ||
 
|-
 
|-
| || || 0.171 µm<sup>2</sup>  || 0.45x || || || || || || || ||
+
| || || || || || || || || ||
 
|-
 
|-
 
| 0.039 µm<sup>2</sup> || 0.58x
 
| 0.039 µm<sup>2</sup> || 0.58x

Revision as of 18:47, 5 April 2017

The 32 nanometer (32 nm) lithography process is a full node semiconductor manufacturing process following the 40 nm process stopgap. Commercial integrated circuit manufacturing using 32 nm process began in 2010. This technology was superseded by the 28 nm process (HN) / 22 nm process (FN) in 2012.

Industry

TSMC cancelled its planned 32nm node process. Intel's 32 nm process became the first process to introduce the self-aligned via patterning.


 
Process Name
1st Production
Lithography Lithography
Immersion
Exposure
Wafer Type
Size
Transistor Type
Voltage
Metal Layers
 
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcell High-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcell eDRAM
Intel
P1268 (CPU) / P1269 (SoC)
2009
193 nm
Yes
SADP
Bulk
300 mm
Planar
 
Value 45 nm Δ
   
112.5 nm 0.63x
112.5 nm 0.70x
0.148 µm2 0.43x
0.199 µm2  
0.171 µm2 0.45x
   


Fab
Process Name​
1st Production​
Type​
Wafer​
 ​
Contacted Gate Pitch​
Interconnect Pitch (M1P)​
SRAM bit cell (HD)​
SRAM bit cell (HS)​
SRAM bit cell (LP)​
DRAM bit cell
Common Platform TSMC Samsung Toshiba / NEC Common Platform 2
32LP
2009 2009 2009 2009 2010
PDSOI Bulk
300mm
Value 45 nm Δ Value 40 nm Δ Value 40 nm Δ Value 40 nm Δ Value 45 nm Δ
130 nm 0.68x 130 nm 0.80x 126 nm 0.98x 120 nm 0.71x 126 nm 0.66x
 ? nm  ?x 100 nm 0.83x 100 nm 0.85x  ? nm  ?x 100 nm  ?x
0.15 µm2 0.41x 0.15 µm2 0.62x 0.149 µm2  ?x 0.124 µm2 0.64x 0.157 µm2 0.42x
0.039 µm2 0.58x

Design Rules

Find models

Click to browse all 32 nm MPU models

32 nm Microprocessors

This list is incomplete; you can help by expanding it.

32 nm Microarchitectures

This list is incomplete; you can help by expanding it.

References

  • Samsung foundry solution for 32 & 28 nm
  • Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.