From WikiChip
10 nm lithography process

The 10 nanometer (10 nm) lithography process is a semiconductor manufacturing process node serving as shrink from the 14 nm process. The term "10 nm" is simply a commercial name for a generation of a certain size and its technology, as opposed to gate length or half pitch. The 10 nm node is currently being introduced and is set to get replaced by the 7 nm process in 2019.

Industry[edit]

At the advanced 10nm process, there are only 3 semiconductor foundries with such manufacturing capabilities: Intel, Samsung, and TSMC.

Due to marketing names, geometries vary greatly between leading manufactures. Although both TSMC and Samsung's 10nm processes are slightly denser than Intel's 14nm in raw logic density, they are far closer to Intel's 14nm than they are to Intel's 10nm (e.g., Samsung's metal pitch just 1 nanometer shorter than Intel's 14nm).


 
Process Name
1st Production
Lithography Lithography
Immersion
Exposure
Wafer Type
Size
Transistor Type
Voltage
 
Fin Pitch
Width
Height
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcell High-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcell eDRAM
Intel TSMC Samsung Common Platform Alliance
The Common Platform Alliance is a joint collaboration between IBM, Samsung, GlobalFoundries, STMicroelectronics, UMC
Paper
P1274 (CPU) / P1275 (SoC)   10LPE
1st generation; 10 nm Low Power Early
, 10LPP
2nd generation; 10 nm Low Power Performance
, 10LPU
3rd generation; 10 nm Low Power Ultimate
 
2017 2017 2017  
193 nm 193 nm 193 nm 193 nm
Yes Yes Yes Yes
SAQP   LELELE SADP
Bulk Bulk Bulk Bulk/SOI
300 mm 300 mm 300 mm 300 mm
FinFET FinFET FinFET FinFET
0.70 V   0.75 V 0.75 V
Value 14 nm Δ Value 16 nm Δ Value 14 nm Δ Value 14 nm Δ
34 nm 0.81x            
               
53 nm 1.26x            
            20 nm  
54 nm 0.77x 64 nm 0.71x 68 nm 0.87x 64 nm 0.80x
36 nm 0.69x 42 nm 0.66x 51 nm 0.80x 48 nm 0.75x
0.0441 µm² 0.62x     0.049 µm² 0.61x    
0.0312 µm² 0.62x 0.042 µm² 0.57x 0.040 µm² 0.63x 0.053 µm² 0.65x
0.0367 µm² 0.62x            
               

Intel[edit]

See also: Intel's Process Technology History

Announced during Intel's Technology and Manufacturing Day 2017, Intel's 10 nm process (P1274) is the first high-volume manufacturing process to employ Self-Aligned Quad Patterning (SAQP) with production starting in the second half of 2017. Intel detailed Hyper-Scaling, a marketing term for a suite of techniques used to scale a transistor, SAQP, a single dummy gate and contact over active gate (COAG). Intel's initial 10 nm process has up to 60% lower power and 25% better performance than their initial 14 nm but will actually have lower performance than their "14nm++" process. Intel expect their "10nm+" process to surpass that.

Intel's 10nm process is roughly 1.7x the raw logic density of the next densest 10nm process, albeit due to aggressive pattering techniques they also have the most complex process available to date.

Samsung[edit]

Samsung demonstrated their 128 Mebibit SRAM wafer from their 10nm FinFET process. Samsung, which unlike Intel uses LELELE (litho-etch-litho-etch-litho-etch), ramped up mass production in May of 2017. ChipWorks/TechInsight measured the CPP/MMP which came a little short of the Common Platform Alliance Paper which was presented in 2016, at 68 mm contacted gate pitch, 51 nm metal pitch, dual-depth shallow trench isolation (STI), and had single dummy gate.

10 nm Microprocessors[edit]

This list is incomplete; you can help by expanding it.

10 nm Microarchitectures[edit]

This list is incomplete; you can help by expanding it.

Documents[edit]

References[edit]

  • Mark Bohr, Intel. Intel Technology and Manufacturing Day. Mar 28, 2017.
  • Samsung uses LELELE based on their press release about their 10nm FinFET Technology on October 17, 2016.
  • Seo, K-I., et al. "A 10nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014.
  • Cho, H-J., et al. "Si FinFET based 10nm technology with multi Vt gate stack for low power and high performance applications." VLSI Technology, 2016 IEEE Symposium on. IEEE, 2016.
  • Song, Taejoong, et al. "A 10 nm FinFET 128 Mb SRAM With Assist Adjustment System for Power, Performance, and Area Optimization." IEEE Journal of Solid-State Circuits (2016).
  • Clinton, Michael, et al. "12.3 A low-power and high-performance 10nm SRAM architecture for mobile applications." Solid-State Circuits Conference (ISSCC), 2017 IEEE International. IEEE, 2017.
  • Samsung's actual transitor size was measured by ChipWorks/TechInsight based on the Qualcomm Snapdragon 835 which is manufactured on Samsung's 10nm process.