(→Intel)  | 
				 (fixed)  | 
				||
| (31 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
{{Lithography processes}}  | {{Lithography processes}}  | ||
| − | The '''45 nm lithography process''' is a [[technology node|full node]] semiconductor manufacturing process following the [[55 nm lithography process|55 nm process]] stopgap. Commercial [[integrated circuit]] manufacturing using 45 nm process began in 2007. This technology was superseded by the [[40 nm lithography process|40 nm   | + | The '''45 nanometer (45 nm) lithography process''' is a [[technology node|full node]] semiconductor manufacturing process following the [[55 nm lithography process|55 nm process]] stopgap.    | 
| + | :Commercial [[integrated circuit]] manufacturing using [[45 nm]] process began in [[2007]].    | ||
| + | This technology was superseded by the [[40 nm lithography process|40 nm]] (HN) / [[32 nm lithography process|32 nm process]] (FN) in [[2010]].  | ||
== Industry ==  | == Industry ==  | ||
| + | [[File:45nm SRAM photo.JPG|left|400px|Die photo of an [[Intel]] [[45 nm]] shuttle test chip including 153 MiB [[SRAM]] and logic test circuits]]  | ||
| + | In January of [[2006]] [[Intel]] announced that they've been able to fabricate the first fully functional [[SRAM]] chips on a [[45 nm]] process. As a preview Intel showcased 45 nm SRAM chip (shown below) packing more than 1 billion transistors. Intel opened 3 45 nm facilities, their initial {{intel|D1D}} facility in Oregon, {{intel|Fab 32}} in Arizona and {{intel|Fab 28}} in Israel. Intel's 45 nm process is the first time high-k + metal gate transistors was used in high-volume manufacturing process.  | ||
| − | |||
{| class="wikitable"  | {| class="wikitable"  | ||
|-  | |-  | ||
| − | |   | + | ! colspan="4" | [[Intel]] 45 nm Design Rules  | 
| − | |||
| − | |||
|-  | |-  | ||
| − | + | ! Layer !! Pitch !! Thick !! Aspect <br>Ratio  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | ! Layer !! Pitch !! Thick !! Aspect Ratio  | ||
|-  | |-  | ||
| Isolation || 200 nm || 200 nm || -  | | Isolation || 200 nm || 200 nm || -  | ||
|-  | |-  | ||
| − | | Contacted Gate || 180 nm || 60 nm || --  | + | | Contacted <br>Gate || 180 nm || 60 nm || --  | 
|-  | |-  | ||
| Metal 1 || 160 nm || 144 nm || 1.8  | | Metal 1 || 160 nm || 144 nm || 1.8  | ||
| Line 42: | Line 34: | ||
| Metal 8 || 810 nm || 720 nm || 1.8  | | Metal 8 || 810 nm || 720 nm || 1.8  | ||
|-  | |-  | ||
| − | | Metal 9 || 30.5 µm || 7 µm ||   | + | | Metal 9 || 30.5 µm || 7 µm || 0.4  | 
|}  | |}  | ||
| + | |||
| + | === Specifications ===  | ||
| + | {{scrolling table/top|style=text-align: right; | first=Fab /<br>Manuf  | ||
| + |  |Process <br>Name  | ||
| + |  |1st Production  | ||
| + |  |Type  | ||
| + |  |Wafer  | ||
| + |  |   | ||
| + |  |Contacted Gate Pitch  | ||
| + |  |Interconnect Pitch (M1P)  | ||
| + |  |SRAM bit cell (HD)  | ||
| + |  |SRAM bit cell (LP)  | ||
| + |  |DRAM bit cell  | ||
| + | }}  | ||
| + | {{scrolling table/mid}}  | ||
| + | |-  | ||
| + | ! colspan="2" | [[Intel]] !! colspan="2" | [[Fujitsu]] !! colspan="2" | [[TI]] !! colspan="2" | [[Toshiba]] / <br>[[Sony]] / [[NEC]]  !!  colspan="2" | [[Samsung]] !!  colspan="2" | [[IBM]] / [[Toshiba]] / <br>[[Sony]] / [[AMD]]  | ||
| + | |- style="text-align: center;"  | ||
| + | | colspan="2" | P1266 (CPU) / P1269 (SoC) <br>/ P1266.8 (SoC)  || colspan="2" | CS-300 || colspan="2" | || colspan="2" | || colspan="2" | 11LP || colspan="2" |  | ||
| + | |- style="text-align: center;"  | ||
| + | | colspan="2" | 2006 || colspan="2" | 2008 || colspan="2" | 2008 || colspan="2" | 2006 || colspan="2" | 2007 || colspan="2" | 2007  | ||
| + | |- style="text-align: center;"  | ||
| + | | colspan="10" | Bulk || colspan="2" | PDSOI  | ||
| + | |- style="text-align: center;"  | ||
| + | | colspan="12" | 300mm  | ||
| + | |-  | ||
| + | ! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ  | ||
| + | |-  | ||
| + | | 180 nm || 0.82x || 190 nm || ?x || ? nm || ?x || 180 nm || ?x || ? nm || ?x || 190 nm || 0.76x  | ||
| + | |-  | ||
| + | | 160 nm || 0.76x || ? nm || ?x || ? nm || ?x || ? nm || ?x || ? nm || ?x || ? nm || ?x  | ||
| + | |-  | ||
| + | | 0.346 µm² || 0.61x || 0.225 µm² || ?x || 0.255 µm² || ?x || 0.248 µm² || ?x || 0.29 µm² || 0.54x || 0.370 µm² || 0.57x  | ||
| + | |-  | ||
| + | | 0.3816 µm² || 0.56x || || || || || || || 0.359 µm² || 0.53x || ||  | ||
| + | |-  | ||
| + | | || || || || || || || || 0.11 µm² || 0.58x || 0.067 µm² || 0.53x  | ||
| + | {{scrolling table/end}}  | ||
| + | |||
| + | === Intel ===  | ||
| + | <gallery widths=200px heights=300px>  | ||
| + | File:45nm wafer photo 2.JPG|Intel engineer holding 300 mm wafer with 45 nm shuttle test chips  | ||
| + | File:45nm wafer photo 1.jpg|300 mm wafer with 45 nm shuttle test chips  | ||
| + | File:45nm-wafer-photo-3.jpg|Intel 300 mm wafer with 45 nm shuttle test chips  | ||
| + | File:45nm SRAM Cell.jpg|6T SRAM Bit-Cell  | ||
| + | </gallery>  | ||
== 45 nm Microprocessors==  | == 45 nm Microprocessors==  | ||
| + | * AMD  | ||
| + | ** {{amd|Athlon II}}  | ||
| + | ** {{amd|Opteron}}  | ||
| + | ** {{amd|Phenom II}}  | ||
| + | * Freescale  | ||
| + | ** {{freescale|QorIQ}}  | ||
| + | * IBM  | ||
| + | ** {{ibm|Power7}}  | ||
* Intel  | * Intel  | ||
** {{intel|Atom}}  | ** {{intel|Atom}}  | ||
| + | ** {{intel|Celeron}}  | ||
| + | ** {{intel|Core 2 Duo}}  | ||
| + | ** {{intel|Core 2 Extreme}}  | ||
| + | ** {{intel|Core 2 Quad}}  | ||
| + | ** {{intel|Core 2 Quad Extreme}}  | ||
| + | ** {{intel|Core 2 Solo}}  | ||
| + | ** {{intel|Core i3}}  | ||
| + | ** {{intel|Core i5}}  | ||
| + | ** {{intel|Core i7}}  | ||
** {{intel|Core i7EE}}  | ** {{intel|Core i7EE}}  | ||
| + | ** {{intel|Pentium Dual-Core}}  | ||
| + | ** {{intel|Pentium (2009)|Pentium}}  | ||
| + | ** {{intel|Xeon}}  | ||
| + | {{expand list}}n Chips==  | ||
{{expand list}}  | {{expand list}}  | ||
| − | == 45 nm   | + | == 45 nm Microarchitectures ==  | 
| + | * AMD  | ||
| + | ** {{amd|K10|l=arch}}  | ||
| + | * IBM  | ||
| + | ** {{ibm|z196|l=arch}}  | ||
| + | * Intel  | ||
| + | ** {{intel|Bonnell|l=arch}}  | ||
| + | ** {{intel|Nehalem|l=arch}}  | ||
| + | ** {{intel|Penryn|l=arch}}  | ||
| + | * VIA Technologies  | ||
| + | ** {{via|Isaiah|l=arch}}  | ||
| + | |||
{{expand list}}  | {{expand list}}  | ||
| − | == 45 nm   | + | == Documents ==  | 
| − | * Intel  | + | * [[:File:samsung foundry - 45, 65, 90 (August, 2007).pdf|Samsung foundry - 45 nm, 65 nm, 90 nm guide (August, 2007)]]  | 
| − | **   | + | * Intel  | 
| − | **   | + | ** [[:File:45nmSummaryFoils.pdf|New Intel 45 nm Processors]]  | 
| − | **   | + | ** [[:File:Press45nm107 FINAL.pdf|High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors]]  | 
| + | ** [[:File:SandToCircuit FINAL.pdf|From sand to circuits]]  | ||
| + | |||
| + | == References ==  | ||
| + | * Mistry, Kaizad, et al. "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.  | ||
| − | + | [[category:lithography]]  | |
Latest revision as of 20:39, 19 March 2025
The 45 nanometer (45 nm) lithography process is a full node semiconductor manufacturing process following the 55 nm process stopgap.
- Commercial integrated circuit manufacturing using 45 nm process began in 2007.
 
This technology was superseded by the 40 nm (HN) / 32 nm process (FN) in 2010.
Contents
Industry[edit]
In January of 2006 Intel announced that they've been able to fabricate the first fully functional SRAM chips on a 45 nm process. As a preview Intel showcased 45 nm SRAM chip (shown below) packing more than 1 billion transistors. Intel opened 3 45 nm facilities, their initial D1D facility in Oregon, Fab 32 in Arizona and Fab 28 in Israel. Intel's 45 nm process is the first time high-k + metal gate transistors was used in high-volume manufacturing process.
| Intel 45 nm Design Rules | |||
|---|---|---|---|
| Layer | Pitch | Thick |  Aspect  Ratio  | 
| Isolation | 200 nm | 200 nm | - | 
|  Contacted  Gate  | 
180 nm | 60 nm | -- | 
| Metal 1 | 160 nm | 144 nm | 1.8 | 
| Metal 2 | 160 nm | 144 nm | 1.8 | 
| Metal 3 | 160 nm | 144 nm | 1.8 | 
| Metal 4 | 240 nm | 216 nm | 1.8 | 
| Metal 5 | 280 nm | 252 nm | 1.8 | 
| Metal 6 | 360 nm | 324 nm | 1.8 | 
| Metal 7 | 560 nm | 504 nm | 1.7 | 
| Metal 8 | 810 nm | 720 nm | 1.8 | 
| Metal 9 | 30.5 µm | 7 µm | 0.4 | 
Specifications[edit]
|  Fab / Manuf  | 
|---|
|  Process  Name  | 
| 1st Production | 
| Type | 
| Wafer | 
|  | 
| Contacted Gate Pitch | 
| Interconnect Pitch (M1P) | 
| SRAM bit cell (HD) | 
| SRAM bit cell (LP) | 
| DRAM bit cell | 
| Intel | Fujitsu | TI |  Toshiba /  Sony / NEC  | 
Samsung |  IBM / Toshiba /  Sony / AMD  | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
|  P1266 (CPU) / P1269 (SoC)  / P1266.8 (SoC)  | 
CS-300 | 11LP | |||||||||
| 2006 | 2008 | 2008 | 2006 | 2007 | 2007 | ||||||
| Bulk | PDSOI | ||||||||||
| 300mm | |||||||||||
| Value | 65 nm Δ | Value | 65 nm Δ | Value | 65 nm Δ | Value | 65 nm Δ | Value | 65 nm Δ | Value | 65 nm Δ | 
| 180 nm | 0.82x | 190 nm | ?x | ? nm | ?x | 180 nm | ?x | ? nm | ?x | 190 nm | 0.76x | 
| 160 nm | 0.76x | ? nm | ?x | ? nm | ?x | ? nm | ?x | ? nm | ?x | ? nm | ?x | 
| 0.346 µm² | 0.61x | 0.225 µm² | ?x | 0.255 µm² | ?x | 0.248 µm² | ?x | 0.29 µm² | 0.54x | 0.370 µm² | 0.57x | 
| 0.3816 µm² | 0.56x | 0.359 µm² | 0.53x | ||||||||
| 0.11 µm² | 0.58x | 0.067 µm² | 0.53x | ||||||||
Intel[edit]
45 nm Microprocessors[edit]
- AMD
 - Freescale
 - IBM
 - Intel
 
This list is incomplete; you can help by expanding it.n Chips== This list is incomplete; you can help by expanding it.
45 nm Microarchitectures[edit]
This list is incomplete; you can help by expanding it.
Documents[edit]
References[edit]
- Mistry, Kaizad, et al. "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.