From WikiChip
45 nm lithography process
Revision as of 04:51, 20 July 2018 by Oleg3280 (talk | contribs) (category:lithography)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The 45 nanometer (45 nm) lithography process is a full node semiconductor manufacturing process following the 55 nm process stopgap. Commercial integrated circuit manufacturing using 45 nm process began in 2007. This technology was superseded by the 40 nm process (HN) / 32 nm process (FN) in 2010.

Industry[edit]

In January of 2006 Intel announced that they've been able to fabricate the first fully functional SRAM chips on a 45 nm process. As a preview Intel showcased 45nm SRAM chip (shown below) packing more than 1 billion transistors. Intel opened 3 45 nm facilities, their initial D1D facility in Oregon, Fab 32 in Arizona and Fab 28 in Israel. Intel's 45 nm process is the first time high-k + metal gate transistors was used in high-volume manufacturing process.

Fab
Process Name​
1st Production​
Type​
Wafer​
 ​
Contacted Gate Pitch​
Interconnect Pitch (M1P)​
SRAM bit cell (HD)​
SRAM bit cell (LP)​
DRAM bit cell
Intel Fujitsu TI Toshiba / Sony / NEC Samsung IBM / Toshiba / Sony / AMD
P1266 (CPU) / P1266.8 (SoC) / P1269 (SoC) CS-300 11LP
2006 2008 2008 2006 2007 2007
Bulk PDSOI
300mm
Value 65 nm Δ Value 65 nm Δ Value 65 nm Δ Value 65 nm Δ Value 65 nm Δ Value 65 nm Δ
180 nm 0.82x 190 nm  ?x  ? nm  ?x 180 nm  ?x  ? nm  ?x 190 nm 0.76x
160 nm 0.76x  ? nm  ?x  ? nm  ?x  ? nm  ?x  ? nm  ?x  ? nm  ?x
0.346 µm² 0.61x 0.225 µm²  ?x 0.255 µm²  ?x 0.248 µm²  ?x 0.29 µm² 0.54x 0.370 µm² 0.57x
0.3816 µm² 0.56x 0.359 µm² 0.53x
0.11 µm² 0.58x 0.067 µm² 0.53x

Intel[edit]

45 nm Microprocessors[edit]

This list is incomplete; you can help by expanding it.n Chips== This list is incomplete; you can help by expanding it.

45 nm Microarchitectures[edit]

This list is incomplete; you can help by expanding it.

Documents[edit]

References[edit]

  • Mistry, Kaizad, et al. "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.