From WikiChip
					
    Difference between revisions of "32 nm lithography process"    
										|  (→Industry) |  (fixed) | ||
| (7 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
| {{lithography processes}} | {{lithography processes}} | ||
| − | The '''32 nanometer (32 nm) lithography process''' is a [[technology node|full node]] semiconductor manufacturing process following the [[40 nm lithography process|40 nm process]] stopgap. Commercial [[integrated circuit]] manufacturing using 32 nm process began in 2010. This technology was superseded by the [[28 nm lithography process|28 nm process]] (HN) / [[22 nm lithography process|22 nm process]] (FN) in 2012. | + | The '''32 nanometer (32 nm) lithography process''' is a [[technology node|full node]] semiconductor manufacturing   | 
| + | :process following the [[40 nm lithography process|40 nm process]] stopgap.   | ||
| + | Commercial [[integrated circuit]] manufacturing using 32 nm process began in 2010.   | ||
| + | :This technology was superseded by the [[28 nm lithography process|28 nm process]] (HN) / [[22 nm lithography process|22 nm process]] (FN) in [[2012]]. | ||
| == Industry == | == Industry == | ||
| − | + | [[Intel]]'s 32 nm process became the first process to introduce the [[self-aligned via patterning]]. | |
| + | :[[TSMC]] cancelled its planned [[32 nm]] node process.   | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| === Design Rules === | === Design Rules === | ||
| − | {| class="wikitable  | + | {| class="wikitable" | 
| |- | |- | ||
| − | ! colspan="5" | Intel  | + | ! colspan="5" | [[Intel]] 32 nm Design Rules | 
| |- | |- | ||
| − | ! Layer !! Pitch !! Thick !! Aspect Ratio !! Image | + | ! Layer !! Pitch !! Thick !! Aspect<br>Ratio !! Image | 
| |- | |- | ||
| − | | Isolation || 140 nm || 200 || - || rowspan=" | + | | Isolation || 140 nm || 200 || - || rowspan="12" | [[file:intel 32nm design rules.png|left|500px]] | 
| |- | |- | ||
| − | | Contacted Gate ||  112.5 nm || 35 nm || -- | + | | Contacted <br>Gate ||  112.5 nm || 35 nm || -- | 
| |- | |- | ||
| | Metal 1 || 112.5 nm || 95 nm || 1.7   | | Metal 1 || 112.5 nm || 95 nm || 1.7   | ||
| Line 104: | Line 38: | ||
| | Metal 9 || 19.4 µm || 8 µm || 1.5 | | Metal 9 || 19.4 µm || 8 µm || 1.5 | ||
| |- | |- | ||
| − | | Bump || 145.9 µm || 25.5 µm || - | + | | Bump || 145.9 µm || 25.5 µm || -  | 
| + | |- | ||
| |} | |} | ||
| + | |||
| + | == Specifications == | ||
| + | {{nodes comp | ||
| + | <!-- Intel --> | ||
| + |  | process 1 fab          = [[Intel]] | ||
| + |  | process 1 name         = P1268<!--(CPU)-->, P1269<!--(SoC)--> | ||
| + |  | process 1 date         = 2009 | ||
| + |  | process 1 lith         = 193 nm | ||
| + |  | process 1 immersion    = Yes | ||
| + |  | process 1 exposure     = DP | ||
| + |  | process 1 wafer type   = Bulk | ||
| + |  | process 1 wafer size   = 300 mm | ||
| + |  | process 1 transistor   = Planar | ||
| + |  | process 1 volt         = 1.0 V, 0.75 V | ||
| + |  | process 1 layers       = 9 | ||
| + |  | process 1 delta from   = [[45 nm]] Δ | ||
| + |  | process 1 gate len     = 30 nm | ||
| + |  | process 1 gate len Δ   =   | ||
| + |  | process 1 cpp          = 112.5 nm | ||
| + |  | process 1 cpp Δ        = 0.63x | ||
| + |  | process 1 mmp          = 112.5 nm | ||
| + |  | process 1 mmp Δ        = 0.70x | ||
| + |  | process 1 sram hp      = 0.199 µm² | ||
| + |  | process 1 sram hp Δ    =   | ||
| + |  | process 1 sram hd      = 0.148 µm² | ||
| + |  | process 1 sram hd Δ    =   | ||
| + |  | process 1 sram lv      = 0.171 µm² | ||
| + |  | process 1 sram lv Δ    =   | ||
| + |  | process 1 dram         =   | ||
| + |  | process 1 dram Δ       =   | ||
| + | <!-- TSMC --> | ||
| + |  | process 2 fab          = [[TSMC]] | ||
| + |  | process 2 name         =   | ||
| + |  | process 2 date         = cancelled | ||
| + |  | process 2 lith         = 193 nm | ||
| + |  | process 2 immersion    = Yes | ||
| + |  | process 2 exposure     = DP | ||
| + |  | process 2 wafer type   = Bulk | ||
| + |  | process 2 wafer size   = 300 mm | ||
| + |  | process 2 transistor   = Planar | ||
| + |  | process 2 volt         = 1.1 V | ||
| + |  | process 2 layers       =   | ||
| + |  | process 2 delta from   = [[40 nm]] Δ | ||
| + |  | process 2 gate len     = 30 nm | ||
| + |  | process 2 gate len Δ   =   | ||
| + |  | process 2 cpp          = 130 nm | ||
| + |  | process 2 cpp Δ        =   | ||
| + |  | process 2 mmp          = 100 nm | ||
| + |  | process 2 mmp Δ        =   | ||
| + |  | process 2 sram hp      =   | ||
| + |  | process 2 sram hp Δ    =   | ||
| + |  | process 2 sram hd      = 0.15 µm² | ||
| + |  | process 2 sram hd Δ    =   | ||
| + |  | process 2 sram lv      =   | ||
| + |  | process 2 sram lv Δ    =   | ||
| + |  | process 2 dram         =   | ||
| + |  | process 2 dram Δ       =   | ||
| + | <!-- IBM --> | ||
| + |  | process 3 fab          = [[Samsung]] <info>[[Common Platform Alliance]] - The Common Platform Alliance 20 nm node was a collaboration between [[IBM]], [[Samsung]], [[Freescale]], [[Toshiba]], [[Chartered Semiconductor Manufacturing]], [[Infineon Technologies]]</info> | ||
| + |  | process 3 name         =   | ||
| + |  | process 3 date         = 2011 | ||
| + |  | process 3 lith         = 193 nm | ||
| + |  | process 3 immersion    = Yes | ||
| + |  | process 3 exposure     = DP | ||
| + |  | process 3 wafer type   = Bulk | ||
| + |  | process 3 wafer size   = 300 mm | ||
| + |  | process 3 transistor   = Planar | ||
| + |  | process 3 volt         = 1.0 V, 0.8 V | ||
| + |  | process 3 layers       = 11 | ||
| + |  | process 3 delta from   = [[45 nm]] Δ | ||
| + |  | process 3 gate len     = 30 nm | ||
| + |  | process 3 gate len Δ   =   | ||
| + |  | process 3 cpp          = 126 nm | ||
| + |  | process 3 cpp Δ        =   | ||
| + |  | process 3 mmp          = 100 nm | ||
| + |  | process 3 mmp Δ        =   | ||
| + |  | process 3 sram hp      =   | ||
| + |  | process 3 sram hp Δ    =   | ||
| + |  | process 3 sram hd      = 0.157 µm² | ||
| + |  | process 3 sram hd Δ    =   | ||
| + |  | process 3 sram lv      =   | ||
| + |  | process 3 sram lv Δ    =   | ||
| + |  | process 3 dram         =   | ||
| + |  | process 3 dram Δ       =   | ||
| + | <!-- Toshiba --> | ||
| + |  | process 4 fab          = [[NEC]] <info>[[NEC]] - [[Toshiba]]</info> | ||
| + |  | process 4 name         =   | ||
| + |  | process 4 date         =   | ||
| + |  | process 4 lith         = 193 nm | ||
| + |  | process 4 immersion    = Yes | ||
| + |  | process 4 exposure     = DP | ||
| + |  | process 4 wafer type   = Bulk | ||
| + |  | process 4 wafer size   = 300 mm | ||
| + |  | process 4 transistor   = Planar | ||
| + |  | process 4 volt         = 1 V | ||
| + |  | process 4 layers       =   | ||
| + |  | process 4 delta from   = [[40 nm]] Δ | ||
| + |  | process 4 gate len     =   | ||
| + |  | process 4 gate len Δ   =   | ||
| + |  | process 4 cpp          = 120 nm | ||
| + |  | process 4 cpp Δ        =   | ||
| + |  | process 4 mmp          = 100 nm | ||
| + |  | process 4 mmp Δ        =   | ||
| + |  | process 4 sram hp      =   | ||
| + |  | process 4 sram hp Δ    =   | ||
| + |  | process 4 sram hd      = 0.124 µm² | ||
| + |  | process 4 sram hd Δ    =   | ||
| + |  | process 4 sram lv      =   | ||
| + |  | process 4 sram lv Δ    =   | ||
| + |  | process 4 dram         =   | ||
| + |  | process 4 dram Δ       =   | ||
| + | <!-- IBM SOI --> | ||
| + |  | process 5 fab          = [[AMD]] <info>[[Common Platform Alliance]] (SOI) - [[AMD]], [[IBM]], [[Freescale]]</info> | ||
| + |  | process 5 name         =   | ||
| + |  | process 5 date         =   | ||
| + |  | process 5 lith         = 193 nm | ||
| + |  | process 5 immersion    = Yes | ||
| + |  | process 5 exposure     = DP | ||
| + |  | process 5 wafer type   = SOI | ||
| + |  | process 5 wafer size   = 300 mm | ||
| + |  | process 5 transistor   = Planar | ||
| + |  | process 5 volt         = 1 V | ||
| + |  | process 5 layers       = 11 | ||
| + |  | process 5 delta from   = [[45 nm]] Δ | ||
| + |  | process 5 gate len     = 25 nm | ||
| + |  | process 5 gate len Δ   =   | ||
| + |  | process 5 cpp          = 130 nm | ||
| + |  | process 5 cpp Δ        =   | ||
| + |  | process 5 mmp          = 100 nm | ||
| + |  | process 5 mmp Δ        =   | ||
| + |  | process 5 sram hp      =   | ||
| + |  | process 5 sram hp Δ    =   | ||
| + |  | process 5 sram hd      = 0.149 µm² | ||
| + |  | process 5 sram hd Δ    =   | ||
| + |  | process 5 sram lv      =   | ||
| + |  | process 5 sram lv Δ    =   | ||
| + |  | process 5 dram         = 0.039 <br>µm² | ||
| + |  | process 5 dram Δ       =   | ||
| + | }} | ||
| == Find models == | == Find models == | ||
| Line 120: | Line 194: | ||
|   | ?first launched |   | ?first launched | ||
|   | ?base frequency |   | ?base frequency | ||
| − |   | format=template|link=all|sort=name|order=asc|headers=hide|mainlabel=-|intro=<table class="wikitable"><tr><th colspan="8">[[32 nm]] Microprocessors</th></tr><tr><th colspan="3">Model</th><th colspan="5">Specs</th></tr><tr><th>Model</th><th>Family</th><th>µarch</th><th>Process</th><th>Designer</th><th>Manufacturer</th><th>Intro</th><th>Freq</th></tr>|outro=</table>|limit=0|searchlabel=Click to browse all 32 nm MPU models|sep=,|template=proc table 1|userparam=9 | + |   | format=template |link=all |sort=name |order=asc |headers=hide |mainlabel=- |intro=<table class="wikitable"><tr><th colspan="8">[[32 nm]] Microprocessors</th></tr><tr><th colspan="3">Model</th><th colspan="5">Specs</th></tr><tr><th>Model</th><th>Family</th><th>µarch</th><th>Process</th><th>Designer</th><th>Manufacturer</th><th>Intro</th><th>Freq</th></tr> |outro=</table> |limit=0 |searchlabel=Click to browse all 32 nm MPU models |sep=, |template=proc table 1 |userparam=9   | 
| }} | }} | ||
| Line 145: | Line 219: | ||
| == 32 nm Microarchitectures == | == 32 nm Microarchitectures == | ||
| + | * AMD | ||
| + | ** {{amd|Bulldozer|l=arch}} | ||
| + | ** {{amd|Piledriver|l=arch}} | ||
| + | * IBM | ||
| + | ** {{ibm|z12|l=arch}} | ||
| * Intel | * Intel | ||
| − | ** {{intel| | + | ** {{intel|Saltwell|l=arch}} | 
| − | ** {{intel | + | ** {{intel|Sandy Bridge|l=arch}} | 
| − | ** {{intel | + | ** {{intel|Westmere|l=arch}} | 
| − | |||
| − | |||
| − | |||
| {{expand list}} | {{expand list}} | ||
| + | |||
| + | == Documents == | ||
| + | * [[:File:samsung foundry solution 28-32nm.pdf|Samsung foundry solution for 32 & 28 nm]] | ||
| == References == | == References == | ||
| − | *  | + | * Greene, B., et al. "High performance 32nm SOI CMOS with high-k/metal gate and 0.149 µm 2 SRAM and ultra low-k back end with eleven levels of copper." VLSI Technology, 2009 Symposium on. IEEE, 2009. | 
| + | * Jan, C-H., et al. "A 32nm SoC platform technology with 2 nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009. | ||
| + | * Wu, Shien-Yang, et al. "A 32nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007. | ||
| + | * Chen, X., et al. "A cost effective 32nm high-K/metal gate CMOS technology for low power applications with single-metal/gate-first process." VLSI Technology, 2008 Symposium on. IEEE, 2008. | ||
| * Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | * Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
| * Natarajan, S., et al. "A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | * Natarajan, S., et al. "A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
| + | * Hasegawa, S., et al. "A cost-conscious 32nm CMOS platform technology with advanced single exposure lithography and gate-first metal gate/high-k process." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
| + | * Arnaud, F., et al. "32nm general purpose bulk CMOS technology for high performance applications at low voltage." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
| + | * Pilo, Harold, et al. "A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation enabled by stability, write-ability and read-ability enhancements." IEEE Journal of Solid-State Circuits 47.1 (2012): 97-106. | ||
| + | |||
| + | [[category:lithography]] | ||
Latest revision as of 21:10, 19 March 2025
The 32 nanometer (32 nm) lithography process is a full node semiconductor manufacturing
- process following the 40 nm process stopgap.
Commercial integrated circuit manufacturing using 32 nm process began in 2010.
- This technology was superseded by the 28 nm process (HN) / 22 nm process (FN) in 2012.
Contents
Industry[edit]
Intel's 32 nm process became the first process to introduce the self-aligned via patterning.
Design Rules[edit]
| Intel 32 nm Design Rules | ||||
|---|---|---|---|---|
| Layer | Pitch | Thick | Aspect Ratio | Image | 
| Isolation | 140 nm | 200 | - | |
| Contacted Gate | 112.5 nm | 35 nm | -- | |
| Metal 1 | 112.5 nm | 95 nm | 1.7 | |
| Metal 2 | 112.5 nm | 95 nm | 1.7 | |
| Metal 3 | 112.5 nm | 95 nm | 1.7 | |
| Metal 4 | 168.8 nm | 151 nm | 1.8 | |
| Metal 5 | 225.0 nm | 204 nm | 1.8 | |
| Metal 6 | 337.6 nm | 303 nm | 1.8 | |
| Metal 7 | 450.1 nm | 388 nm | 1.7 | |
| Metal 8 | 566.5 nm | 504 nm | 1.8 | |
| Metal 9 | 19.4 µm | 8 µm | 1.5 | |
| Bump | 145.9 µm | 25.5 µm | - | |
Specifications[edit]
| Process Name | |
|---|---|
| 1st Production | |
| Litho- graphy | Lithography | 
| Immersion | |
| Exposure | |
| Wafer | Type | 
| Size | |
| Tran- sistor | Type | 
| Voltage | |
| Metal Layers | |
| Gate Length (Lg) | |
| Contacted Gate Pitch (CPP) | |
| Minimum Metal Pitch (MMP) | |
| SRAM bitcell | High-Perf (HP) | 
| High-Density (HD) | |
| Low-Voltage (LV) | |
| DRAM bitcell | eDRAM | 
| Intel | TSMC | Samsung Common Platform Alliance - The Common Platform Alliance 20 nm node was a collaboration between IBM, Samsung, Freescale, Toshiba, Chartered Semiconductor Manufacturing, Infineon Technologies | NEC | AMD | |||||
|---|---|---|---|---|---|---|---|---|---|
| P1268, P1269 | |||||||||
| 2009 | cancelled | 2011 | |||||||
| 193 nm | 193 nm | 193 nm | 193 nm | 193 nm | |||||
| Yes | Yes | Yes | Yes | Yes | |||||
| DP | DP | DP | DP | DP | |||||
| Bulk | Bulk | Bulk | Bulk | SOI | |||||
| 300 mm | 300 mm | 300 mm | 300 mm | 300 mm | |||||
| Planar | Planar | Planar | Planar | Planar | |||||
| 1.0 V, 0.75 V | 1.1 V | 1.0 V, 0.8 V | 1 V | 1 V | |||||
| 9 | 11 | 11 | |||||||
| Value | 45 nm Δ | Value | 40 nm Δ | Value | 45 nm Δ | Value | 40 nm Δ | Value | 45 nm Δ | 
| 30 nm | 30 nm | 30 nm | 25 nm | ||||||
| 112.5 nm | 0.63x | 130 nm | 126 nm | 120 nm | 130 nm | ||||
| 112.5 nm | 0.70x | 100 nm | 100 nm | 100 nm | 100 nm | ||||
| 0.199 µm² | |||||||||
| 0.148 µm² | 0.15 µm² | 0.157 µm² | 0.124 µm² | 0.149 µm² | |||||
| 0.171 µm² | |||||||||
| 0.039 µm² | |||||||||
Find models[edit]
Click to browse all 32 nm MPU models
32 nm Microprocessors[edit]
- AMD
- Intel
- UC Davis
- Princeton
This list is incomplete; you can help by expanding it.
32 nm Microarchitectures[edit]
- AMD
- IBM
- Intel
This list is incomplete; you can help by expanding it.
Documents[edit]
References[edit]
- Greene, B., et al. "High performance 32nm SOI CMOS with high-k/metal gate and 0.149 µm 2 SRAM and ultra low-k back end with eleven levels of copper." VLSI Technology, 2009 Symposium on. IEEE, 2009.
- Jan, C-H., et al. "A 32nm SoC platform technology with 2 nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009.
- Wu, Shien-Yang, et al. "A 32nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.
- Chen, X., et al. "A cost effective 32nm high-K/metal gate CMOS technology for low power applications with single-metal/gate-first process." VLSI Technology, 2008 Symposium on. IEEE, 2008.
- Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Natarajan, S., et al. "A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Hasegawa, S., et al. "A cost-conscious 32nm CMOS platform technology with advanced single exposure lithography and gate-first metal gate/high-k process." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Arnaud, F., et al. "32nm general purpose bulk CMOS technology for high performance applications at low voltage." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Pilo, Harold, et al. "A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation enabled by stability, write-ability and read-ability enhancements." IEEE Journal of Solid-State Circuits 47.1 (2012): 97-106.
 Semiconductor lithography processes technology
 Semiconductor lithography processes technology
