From WikiChip
Difference between revisions of "32 nm lithography process"
(→Design Rules) |
(fixed) |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{lithography processes}} | {{lithography processes}} | ||
− | The '''32 nanometer (32 nm) lithography process''' is a [[technology node|full node]] semiconductor manufacturing process following the [[40 nm lithography process|40 nm process]] stopgap. Commercial [[integrated circuit]] manufacturing using 32 nm process began in 2010. This technology was superseded by the [[28 nm lithography process|28 nm process]] (HN) / [[22 nm lithography process|22 nm process]] (FN) in 2012. | + | The '''32 nanometer (32 nm) lithography process''' is a [[technology node|full node]] semiconductor manufacturing |
+ | :process following the [[40 nm lithography process|40 nm process]] stopgap. | ||
+ | Commercial [[integrated circuit]] manufacturing using 32 nm process began in 2010. | ||
+ | :This technology was superseded by the [[28 nm lithography process|28 nm process]] (HN) / [[22 nm lithography process|22 nm process]] (FN) in [[2012]]. | ||
== Industry == | == Industry == | ||
− | + | [[Intel]]'s 32 nm process became the first process to introduce the [[self-aligned via patterning]]. | |
+ | :[[TSMC]] cancelled its planned [[32 nm]] node process. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Design Rules === | === Design Rules === | ||
− | {| class="wikitable | + | {| class="wikitable" |
|- | |- | ||
− | ! colspan="5" | Intel | + | ! colspan="5" | [[Intel]] 32 nm Design Rules |
|- | |- | ||
− | ! Layer !! Pitch !! Thick !! Aspect Ratio !! Image | + | ! Layer !! Pitch !! Thick !! Aspect<br>Ratio !! Image |
|- | |- | ||
− | | Isolation || 140 nm || 200 || - || rowspan=" | + | | Isolation || 140 nm || 200 || - || rowspan="12" | [[file:intel 32nm design rules.png|left|500px]] |
|- | |- | ||
− | | Contacted Gate || 112.5 nm || 35 nm || -- | + | | Contacted <br>Gate || 112.5 nm || 35 nm || -- |
|- | |- | ||
| Metal 1 || 112.5 nm || 95 nm || 1.7 | | Metal 1 || 112.5 nm || 95 nm || 1.7 | ||
Line 104: | Line 38: | ||
| Metal 9 || 19.4 µm || 8 µm || 1.5 | | Metal 9 || 19.4 µm || 8 µm || 1.5 | ||
|- | |- | ||
− | | Bump || 145.9 µm || 25.5 µm || - | + | | Bump || 145.9 µm || 25.5 µm || - |
+ | |- | ||
|} | |} | ||
+ | |||
+ | == Specifications == | ||
+ | {{nodes comp | ||
+ | <!-- Intel --> | ||
+ | | process 1 fab = [[Intel]] | ||
+ | | process 1 name = P1268<!--(CPU)-->, P1269<!--(SoC)--> | ||
+ | | process 1 date = 2009 | ||
+ | | process 1 lith = 193 nm | ||
+ | | process 1 immersion = Yes | ||
+ | | process 1 exposure = DP | ||
+ | | process 1 wafer type = Bulk | ||
+ | | process 1 wafer size = 300 mm | ||
+ | | process 1 transistor = Planar | ||
+ | | process 1 volt = 1.0 V, 0.75 V | ||
+ | | process 1 layers = 9 | ||
+ | | process 1 delta from = [[45 nm]] Δ | ||
+ | | process 1 gate len = 30 nm | ||
+ | | process 1 gate len Δ = | ||
+ | | process 1 cpp = 112.5 nm | ||
+ | | process 1 cpp Δ = 0.63x | ||
+ | | process 1 mmp = 112.5 nm | ||
+ | | process 1 mmp Δ = 0.70x | ||
+ | | process 1 sram hp = 0.199 µm² | ||
+ | | process 1 sram hp Δ = | ||
+ | | process 1 sram hd = 0.148 µm² | ||
+ | | process 1 sram hd Δ = | ||
+ | | process 1 sram lv = 0.171 µm² | ||
+ | | process 1 sram lv Δ = | ||
+ | | process 1 dram = | ||
+ | | process 1 dram Δ = | ||
+ | <!-- TSMC --> | ||
+ | | process 2 fab = [[TSMC]] | ||
+ | | process 2 name = | ||
+ | | process 2 date = cancelled | ||
+ | | process 2 lith = 193 nm | ||
+ | | process 2 immersion = Yes | ||
+ | | process 2 exposure = DP | ||
+ | | process 2 wafer type = Bulk | ||
+ | | process 2 wafer size = 300 mm | ||
+ | | process 2 transistor = Planar | ||
+ | | process 2 volt = 1.1 V | ||
+ | | process 2 layers = | ||
+ | | process 2 delta from = [[40 nm]] Δ | ||
+ | | process 2 gate len = 30 nm | ||
+ | | process 2 gate len Δ = | ||
+ | | process 2 cpp = 130 nm | ||
+ | | process 2 cpp Δ = | ||
+ | | process 2 mmp = 100 nm | ||
+ | | process 2 mmp Δ = | ||
+ | | process 2 sram hp = | ||
+ | | process 2 sram hp Δ = | ||
+ | | process 2 sram hd = 0.15 µm² | ||
+ | | process 2 sram hd Δ = | ||
+ | | process 2 sram lv = | ||
+ | | process 2 sram lv Δ = | ||
+ | | process 2 dram = | ||
+ | | process 2 dram Δ = | ||
+ | <!-- IBM --> | ||
+ | | process 3 fab = [[Samsung]] <info>[[Common Platform Alliance]] - The Common Platform Alliance 20 nm node was a collaboration between [[IBM]], [[Samsung]], [[Freescale]], [[Toshiba]], [[Chartered Semiconductor Manufacturing]], [[Infineon Technologies]]</info> | ||
+ | | process 3 name = | ||
+ | | process 3 date = 2011 | ||
+ | | process 3 lith = 193 nm | ||
+ | | process 3 immersion = Yes | ||
+ | | process 3 exposure = DP | ||
+ | | process 3 wafer type = Bulk | ||
+ | | process 3 wafer size = 300 mm | ||
+ | | process 3 transistor = Planar | ||
+ | | process 3 volt = 1.0 V, 0.8 V | ||
+ | | process 3 layers = 11 | ||
+ | | process 3 delta from = [[45 nm]] Δ | ||
+ | | process 3 gate len = 30 nm | ||
+ | | process 3 gate len Δ = | ||
+ | | process 3 cpp = 126 nm | ||
+ | | process 3 cpp Δ = | ||
+ | | process 3 mmp = 100 nm | ||
+ | | process 3 mmp Δ = | ||
+ | | process 3 sram hp = | ||
+ | | process 3 sram hp Δ = | ||
+ | | process 3 sram hd = 0.157 µm² | ||
+ | | process 3 sram hd Δ = | ||
+ | | process 3 sram lv = | ||
+ | | process 3 sram lv Δ = | ||
+ | | process 3 dram = | ||
+ | | process 3 dram Δ = | ||
+ | <!-- Toshiba --> | ||
+ | | process 4 fab = [[NEC]] <info>[[NEC]] - [[Toshiba]]</info> | ||
+ | | process 4 name = | ||
+ | | process 4 date = | ||
+ | | process 4 lith = 193 nm | ||
+ | | process 4 immersion = Yes | ||
+ | | process 4 exposure = DP | ||
+ | | process 4 wafer type = Bulk | ||
+ | | process 4 wafer size = 300 mm | ||
+ | | process 4 transistor = Planar | ||
+ | | process 4 volt = 1 V | ||
+ | | process 4 layers = | ||
+ | | process 4 delta from = [[40 nm]] Δ | ||
+ | | process 4 gate len = | ||
+ | | process 4 gate len Δ = | ||
+ | | process 4 cpp = 120 nm | ||
+ | | process 4 cpp Δ = | ||
+ | | process 4 mmp = 100 nm | ||
+ | | process 4 mmp Δ = | ||
+ | | process 4 sram hp = | ||
+ | | process 4 sram hp Δ = | ||
+ | | process 4 sram hd = 0.124 µm² | ||
+ | | process 4 sram hd Δ = | ||
+ | | process 4 sram lv = | ||
+ | | process 4 sram lv Δ = | ||
+ | | process 4 dram = | ||
+ | | process 4 dram Δ = | ||
+ | <!-- IBM SOI --> | ||
+ | | process 5 fab = [[AMD]] <info>[[Common Platform Alliance]] (SOI) - [[AMD]], [[IBM]], [[Freescale]]</info> | ||
+ | | process 5 name = | ||
+ | | process 5 date = | ||
+ | | process 5 lith = 193 nm | ||
+ | | process 5 immersion = Yes | ||
+ | | process 5 exposure = DP | ||
+ | | process 5 wafer type = SOI | ||
+ | | process 5 wafer size = 300 mm | ||
+ | | process 5 transistor = Planar | ||
+ | | process 5 volt = 1 V | ||
+ | | process 5 layers = 11 | ||
+ | | process 5 delta from = [[45 nm]] Δ | ||
+ | | process 5 gate len = 25 nm | ||
+ | | process 5 gate len Δ = | ||
+ | | process 5 cpp = 130 nm | ||
+ | | process 5 cpp Δ = | ||
+ | | process 5 mmp = 100 nm | ||
+ | | process 5 mmp Δ = | ||
+ | | process 5 sram hp = | ||
+ | | process 5 sram hp Δ = | ||
+ | | process 5 sram hd = 0.149 µm² | ||
+ | | process 5 sram hd Δ = | ||
+ | | process 5 sram lv = | ||
+ | | process 5 sram lv Δ = | ||
+ | | process 5 dram = 0.039 <br>µm² | ||
+ | | process 5 dram Δ = | ||
+ | }} | ||
== Find models == | == Find models == | ||
Line 120: | Line 194: | ||
| ?first launched | | ?first launched | ||
| ?base frequency | | ?base frequency | ||
− | | format=template|link=all|sort=name|order=asc|headers=hide|mainlabel=-|intro=<table class="wikitable"><tr><th colspan="8">[[32 nm]] Microprocessors</th></tr><tr><th colspan="3">Model</th><th colspan="5">Specs</th></tr><tr><th>Model</th><th>Family</th><th>µarch</th><th>Process</th><th>Designer</th><th>Manufacturer</th><th>Intro</th><th>Freq</th></tr>|outro=</table>|limit=0|searchlabel=Click to browse all 32 nm MPU models|sep=,|template=proc table 1|userparam=9 | + | | format=template |link=all |sort=name |order=asc |headers=hide |mainlabel=- |intro=<table class="wikitable"><tr><th colspan="8">[[32 nm]] Microprocessors</th></tr><tr><th colspan="3">Model</th><th colspan="5">Specs</th></tr><tr><th>Model</th><th>Family</th><th>µarch</th><th>Process</th><th>Designer</th><th>Manufacturer</th><th>Intro</th><th>Freq</th></tr> |outro=</table> |limit=0 |searchlabel=Click to browse all 32 nm MPU models |sep=, |template=proc table 1 |userparam=9 |
}} | }} | ||
Line 145: | Line 219: | ||
== 32 nm Microarchitectures == | == 32 nm Microarchitectures == | ||
+ | * AMD | ||
+ | ** {{amd|Bulldozer|l=arch}} | ||
+ | ** {{amd|Piledriver|l=arch}} | ||
+ | * IBM | ||
+ | ** {{ibm|z12|l=arch}} | ||
* Intel | * Intel | ||
− | ** {{intel| | + | ** {{intel|Saltwell|l=arch}} |
− | ** {{intel | + | ** {{intel|Sandy Bridge|l=arch}} |
− | ** {{intel | + | ** {{intel|Westmere|l=arch}} |
− | |||
− | |||
− | |||
{{expand list}} | {{expand list}} | ||
+ | |||
+ | == Documents == | ||
+ | * [[:File:samsung foundry solution 28-32nm.pdf|Samsung foundry solution for 32 & 28 nm]] | ||
== References == | == References == | ||
− | * | + | * Greene, B., et al. "High performance 32nm SOI CMOS with high-k/metal gate and 0.149 µm 2 SRAM and ultra low-k back end with eleven levels of copper." VLSI Technology, 2009 Symposium on. IEEE, 2009. |
+ | * Jan, C-H., et al. "A 32nm SoC platform technology with 2 nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009. | ||
+ | * Wu, Shien-Yang, et al. "A 32nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007. | ||
+ | * Chen, X., et al. "A cost effective 32nm high-K/metal gate CMOS technology for low power applications with single-metal/gate-first process." VLSI Technology, 2008 Symposium on. IEEE, 2008. | ||
* Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | * Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
+ | * Natarajan, S., et al. "A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
+ | * Hasegawa, S., et al. "A cost-conscious 32nm CMOS platform technology with advanced single exposure lithography and gate-first metal gate/high-k process." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
+ | * Arnaud, F., et al. "32nm general purpose bulk CMOS technology for high performance applications at low voltage." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. | ||
+ | * Pilo, Harold, et al. "A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation enabled by stability, write-ability and read-ability enhancements." IEEE Journal of Solid-State Circuits 47.1 (2012): 97-106. | ||
+ | |||
+ | [[category:lithography]] |
Latest revision as of 21:10, 19 March 2025
The 32 nanometer (32 nm) lithography process is a full node semiconductor manufacturing
- process following the 40 nm process stopgap.
Commercial integrated circuit manufacturing using 32 nm process began in 2010.
- This technology was superseded by the 28 nm process (HN) / 22 nm process (FN) in 2012.
Contents
[hide]Industry[edit]
Intel's 32 nm process became the first process to introduce the self-aligned via patterning.
Design Rules[edit]
Intel 32 nm Design Rules | ||||
---|---|---|---|---|
Layer | Pitch | Thick | Aspect Ratio |
Image |
Isolation | 140 nm | 200 | - | |
Contacted Gate |
112.5 nm | 35 nm | -- | |
Metal 1 | 112.5 nm | 95 nm | 1.7 | |
Metal 2 | 112.5 nm | 95 nm | 1.7 | |
Metal 3 | 112.5 nm | 95 nm | 1.7 | |
Metal 4 | 168.8 nm | 151 nm | 1.8 | |
Metal 5 | 225.0 nm | 204 nm | 1.8 | |
Metal 6 | 337.6 nm | 303 nm | 1.8 | |
Metal 7 | 450.1 nm | 388 nm | 1.7 | |
Metal 8 | 566.5 nm | 504 nm | 1.8 | |
Metal 9 | 19.4 µm | 8 µm | 1.5 | |
Bump | 145.9 µm | 25.5 µm | - |
Specifications[edit]
Process Name | |
---|---|
1st Production | |
Litho- graphy |
Lithography |
Immersion | |
Exposure | |
Wafer | Type |
Size | |
Tran- sistor |
Type |
Voltage | |
Metal Layers | |
Gate Length (Lg) | |
Contacted Gate Pitch (CPP) | |
Minimum Metal Pitch (MMP) | |
SRAM bitcell |
High-Perf (HP) |
High-Density (HD) | |
Low-Voltage (LV) | |
DRAM bitcell |
eDRAM |
Intel | TSMC | Samsung Common Platform Alliance - The Common Platform Alliance 20 nm node was a collaboration between IBM, Samsung, Freescale, Toshiba, Chartered Semiconductor Manufacturing, Infineon Technologies |
NEC | AMD | |||||
---|---|---|---|---|---|---|---|---|---|
P1268, P1269 | |||||||||
2009 | cancelled | 2011 | |||||||
193 nm | 193 nm | 193 nm | 193 nm | 193 nm | |||||
Yes | Yes | Yes | Yes | Yes | |||||
DP | DP | DP | DP | DP | |||||
Bulk | Bulk | Bulk | Bulk | SOI | |||||
300 mm | 300 mm | 300 mm | 300 mm | 300 mm | |||||
Planar | Planar | Planar | Planar | Planar | |||||
1.0 V, 0.75 V | 1.1 V | 1.0 V, 0.8 V | 1 V | 1 V | |||||
9 | 11 | 11 | |||||||
Value | 45 nm Δ | Value | 40 nm Δ | Value | 45 nm Δ | Value | 40 nm Δ | Value | 45 nm Δ |
30 nm | 30 nm | 30 nm | 25 nm | ||||||
112.5 nm | 0.63x | 130 nm | 126 nm | 120 nm | 130 nm | ||||
112.5 nm | 0.70x | 100 nm | 100 nm | 100 nm | 100 nm | ||||
0.199 µm² | |||||||||
0.148 µm² | 0.15 µm² | 0.157 µm² | 0.124 µm² | 0.149 µm² | |||||
0.171 µm² | |||||||||
0.039 µm² |
Find models[edit]
Click to browse all 32 nm MPU models
32 nm Microprocessors[edit]
- AMD
- Intel
- UC Davis
- Princeton
This list is incomplete; you can help by expanding it.
32 nm Microarchitectures[edit]
- AMD
- IBM
- Intel
This list is incomplete; you can help by expanding it.
Documents[edit]
References[edit]
- Greene, B., et al. "High performance 32nm SOI CMOS with high-k/metal gate and 0.149 µm 2 SRAM and ultra low-k back end with eleven levels of copper." VLSI Technology, 2009 Symposium on. IEEE, 2009.
- Jan, C-H., et al. "A 32nm SoC platform technology with 2 nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009.
- Wu, Shien-Yang, et al. "A 32nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.
- Chen, X., et al. "A cost effective 32nm high-K/metal gate CMOS technology for low power applications with single-metal/gate-first process." VLSI Technology, 2008 Symposium on. IEEE, 2008.
- Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Natarajan, S., et al. "A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Hasegawa, S., et al. "A cost-conscious 32nm CMOS platform technology with advanced single exposure lithography and gate-first metal gate/high-k process." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Arnaud, F., et al. "32nm general purpose bulk CMOS technology for high performance applications at low voltage." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
- Pilo, Harold, et al. "A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation enabled by stability, write-ability and read-ability enhancements." IEEE Journal of Solid-State Circuits 47.1 (2012): 97-106.