From WikiChip
Difference between revisions of "28 nm lithography process"
Line 4: | Line 4: | ||
== Industry == | == Industry == | ||
{{scrolling table/top|style=text-align: right; | first=Fab | {{scrolling table/top|style=text-align: right; | first=Fab | ||
+ | |Process Name | ||
|Transistor | |Transistor | ||
|Wafer | |Wafer | ||
Line 16: | Line 17: | ||
|- | |- | ||
! colspan="2" | [[Samsung]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[GlobalFoundries]] !! colspan="2" | [[STMicroelectronics]] !! colspan="2" | [[UMC]] | ! colspan="2" | [[Samsung]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[GlobalFoundries]] !! colspan="2" | [[STMicroelectronics]] !! colspan="2" | [[UMC]] | ||
+ | |- style="text-align: center;" | ||
+ | | colspan="2" | 28LP || colspan="2" | || colspan="2" | 28SLP || colspan="2" | || colspan="2" | | ||
|- style="text-align: center;" | |- style="text-align: center;" | ||
| colspan="10" | Planar | | colspan="10" | Planar | ||
Line 23: | Line 26: | ||
! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ | ! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ | ||
|- | |- | ||
− | | | + | | 114 nm || 0.88x || 117 nm || 0.72x || 114 nm || ?x || ?nm || ?x || ?nm || ?x |
|- | |- | ||
− | | | + | | 114 nm || 0.97x || 95 nm || 0.81x || 114 nm || ?x || ?nm || ?x || ?nm || ?x |
|- | |- | ||
| 0.120 µm² || ?x || 0.127 µm² || 0.52x || 0.120 µm² || ?x || 0.120 µm² || ?x || 0.124 µm² || ?x | | 0.120 µm² || ?x || 0.127 µm² || 0.52x || 0.120 µm² || ?x || 0.120 µm² || ?x || 0.124 µm² || ?x | ||
Line 62: | Line 65: | ||
{{expand list}} | {{expand list}} | ||
+ | |||
+ | == References == | ||
+ | * Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012. | ||
+ | * James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014. |
Revision as of 17:49, 28 March 2017
The 28 nanometer (28 nm) lithography process is a half-node semiconductor manufacturing process used as a stopgap between the 32 nm and 22 nm processes. Commercial integrated circuit manufacturing using 28 nm process began in 2011. This technology superseded by commercial 22 nm process.
Industry
Fab |
---|
Process Name |
Transistor |
Wafer |
|
Contacted Gate Pitch |
Interconnect Pitch (M1P) |
SRAM bit cell (HD) |
SRAM bit cell (LP) |
SRAM bit cell (HC) |
Samsung | TSMC | GlobalFoundries | STMicroelectronics | UMC | |||||
---|---|---|---|---|---|---|---|---|---|
28LP | 28SLP | ||||||||
Planar | |||||||||
300 mm | |||||||||
Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ |
114 nm | 0.88x | 117 nm | 0.72x | 114 nm | ?x | ?nm | ?x | ?nm | ?x |
114 nm | 0.97x | 95 nm | 0.81x | 114 nm | ?x | ?nm | ?x | ?nm | ?x |
0.120 µm² | ?x | 0.127 µm² | 0.52x | 0.120 µm² | ?x | 0.120 µm² | ?x | 0.124 µm² | ?x |
0.155 µm² | 0.197 µm² | ?x | ? µm² | ?x | |||||
0.152 µm² | ?x |
28 nm Microprocessors
- AMD
- Intel (Fab'ed by TSMC)
- MediaTek
- Phytium
- PEZY
- Xiaomi
This list is incomplete; you can help by expanding it.
28 nm Microarchitectures
- AMD
- ARM Holdings
- Phytium
This list is incomplete; you can help by expanding it.
References
- Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
- James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.