From WikiChip
					
    Difference between revisions of "28 nm lithography process"    
										 (→Industry)  | 
				 (→Industry)  | 
				||
| Line 18: | Line 18: | ||
! colspan="2" | [[Samsung]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[GlobalFoundries]] !! colspan="2" | [[STMicroelectronics]] !! colspan="2" | [[UMC]]  | ! colspan="2" | [[Samsung]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[GlobalFoundries]] !! colspan="2" | [[STMicroelectronics]] !! colspan="2" | [[UMC]]  | ||
|- style="text-align: center;"  | |- style="text-align: center;"  | ||
| − | | colspan="2" | 28LP || colspan="2" |   || colspan="2" | 28SLP || colspan="2" |   || colspan="2" |    | + | | colspan="2" | 28LP/28LPP || colspan="2" |   || colspan="2" | 28SLP || colspan="2" |   || colspan="2" |    | 
|- style="text-align: center;"  | |- style="text-align: center;"  | ||
| colspan="10" | Planar  | | colspan="10" | Planar  | ||
| Line 26: | Line 26: | ||
! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ  | ! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ  | ||
|-  | |-  | ||
| − | |   | + | | 113.4 nm || 0.88x || 117 nm || 0.72x || 113.4 nm || ?x || ?nm || ?x || ?nm || ?x  | 
|-  | |-  | ||
| 90 nm || 0.76x || 95 nm || 0.81x || 90 nm || ?x || ?nm || ?x || ?nm || ?x  | | 90 nm || 0.76x || 95 nm || 0.81x || 90 nm || ?x || ?nm || ?x || ?nm || ?x  | ||
Revision as of 18:14, 28 March 2017
The 28 nanometer (28 nm) lithography process is a half-node semiconductor manufacturing process used as a stopgap between the 32 nm and 22 nm processes. Commercial integrated circuit manufacturing using 28 nm process began in 2011. This technology superseded by commercial 22 nm process.
Industry
| Fab | 
|---|
| Process Name | 
| Transistor | 
| Wafer | 
|  | 
| Contacted Gate Pitch | 
| Interconnect Pitch (M1P) | 
| SRAM bit cell (HD) | 
| SRAM bit cell (LP) | 
| SRAM bit cell (HC) | 
| Samsung | TSMC | GlobalFoundries | STMicroelectronics | UMC | |||||
|---|---|---|---|---|---|---|---|---|---|
| 28LP/28LPP | 28SLP | ||||||||
| Planar | |||||||||
| 300 mm | |||||||||
| Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | 
| 113.4 nm | 0.88x | 117 nm | 0.72x | 113.4 nm | ?x | ?nm | ?x | ?nm | ?x | 
| 90 nm | 0.76x | 95 nm | 0.81x | 90 nm | ?x | ?nm | ?x | ?nm | ?x | 
| 0.120 µm² | ?x | 0.127 µm² | 0.52x | 0.120 µm² | ?x | 0.120 µm² | ?x | 0.124 µm² | ?x | 
| 0.155 µm² | 0.197 µm² | ?x | ? µm² | ?x | |||||
| 0.152 µm² | ?x | ||||||||
28 nm Microprocessors
- AMD
 - Intel (Fab'ed by TSMC)
 - MediaTek
 - Phytium
 - PEZY
 - Xiaomi
 
This list is incomplete; you can help by expanding it.
28 nm Microarchitectures
- AMD
 - ARM Holdings
 - Phytium
 
This list is incomplete; you can help by expanding it.
References
- Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
 - James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.