From WikiChip
Difference between revisions of "28 nm lithography process"
(→Industry) |
(→Industry) |
||
| Line 18: | Line 18: | ||
! colspan="2" | [[Samsung]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[GlobalFoundries]] !! colspan="2" | [[STMicroelectronics]] !! colspan="2" | [[UMC]] | ! colspan="2" | [[Samsung]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[GlobalFoundries]] !! colspan="2" | [[STMicroelectronics]] !! colspan="2" | [[UMC]] | ||
|- style="text-align: center;" | |- style="text-align: center;" | ||
| − | | colspan="2" | 28LP || colspan="2" | || colspan="2" | 28SLP || colspan="2" | || colspan="2" | | + | | colspan="2" | 28LP/28LPP || colspan="2" | || colspan="2" | 28SLP || colspan="2" | || colspan="2" | |
|- style="text-align: center;" | |- style="text-align: center;" | ||
| colspan="10" | Planar | | colspan="10" | Planar | ||
| Line 26: | Line 26: | ||
! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ | ! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ !! Value !! [[40 nm]] Δ | ||
|- | |- | ||
| − | | | + | | 113.4 nm || 0.88x || 117 nm || 0.72x || 113.4 nm || ?x || ?nm || ?x || ?nm || ?x |
|- | |- | ||
| 90 nm || 0.76x || 95 nm || 0.81x || 90 nm || ?x || ?nm || ?x || ?nm || ?x | | 90 nm || 0.76x || 95 nm || 0.81x || 90 nm || ?x || ?nm || ?x || ?nm || ?x | ||
Revision as of 18:14, 28 March 2017
The 28 nanometer (28 nm) lithography process is a half-node semiconductor manufacturing process used as a stopgap between the 32 nm and 22 nm processes. Commercial integrated circuit manufacturing using 28 nm process began in 2011. This technology superseded by commercial 22 nm process.
Industry
| Fab |
|---|
| Process Name |
| Transistor |
| Wafer |
| |
| Contacted Gate Pitch |
| Interconnect Pitch (M1P) |
| SRAM bit cell (HD) |
| SRAM bit cell (LP) |
| SRAM bit cell (HC) |
| Samsung | TSMC | GlobalFoundries | STMicroelectronics | UMC | |||||
|---|---|---|---|---|---|---|---|---|---|
| 28LP/28LPP | 28SLP | ||||||||
| Planar | |||||||||
| 300 mm | |||||||||
| Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ | Value | 40 nm Δ |
| 113.4 nm | 0.88x | 117 nm | 0.72x | 113.4 nm | ?x | ?nm | ?x | ?nm | ?x |
| 90 nm | 0.76x | 95 nm | 0.81x | 90 nm | ?x | ?nm | ?x | ?nm | ?x |
| 0.120 µm² | ?x | 0.127 µm² | 0.52x | 0.120 µm² | ?x | 0.120 µm² | ?x | 0.124 µm² | ?x |
| 0.155 µm² | 0.197 µm² | ?x | ? µm² | ?x | |||||
| 0.152 µm² | ?x | ||||||||
28 nm Microprocessors
- AMD
- Intel (Fab'ed by TSMC)
- MediaTek
- Phytium
- PEZY
- Xiaomi
This list is incomplete; you can help by expanding it.
28 nm Microarchitectures
- AMD
- ARM Holdings
- Phytium
This list is incomplete; you can help by expanding it.
References
- Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
- James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.