From WikiChip
Difference between revisions of "20 nm lithography process"

(Industry)
m (Bot: Automated text replacement (-Category:Lithography +category:lithography))
 
(4 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
  | process 1 fab          = [[TSMC]]
 
  | process 1 fab          = [[TSMC]]
 
  | process 1 name        =  
 
  | process 1 name        =  
  | process 1 date        = 2014
+
  | process 1 date        = 3Q 2014
 
  | process 1 lith        = 193 nm
 
  | process 1 lith        = 193 nm
 
  | process 1 immersion    = Yes
 
  | process 1 immersion    = Yes
Line 32: Line 32:
 
  | process 1 dram Δ      =  
 
  | process 1 dram Δ      =  
 
<!-- IBM -->
 
<!-- IBM -->
  | process 2 fab          = IBM Common Platform Alliance <info>The '''IBM Common Platform Alliance''' is a joint effort by [[IBM]], [[Samsung]], [[GlobalFoundries]], [[Toshiba]], [[STMicroelectronics]]</info>
+
  | process 2 fab          = [[Common Platform Alliance]] <info>The '''Common Platform Alliance''' 20 nm node was a collaboration between [[IBM]], [[Samsung]], [[GlobalFoundries]], [[Toshiba]], [[STMicroelectronics]]</info>
 
  | process 2 name        = &nbsp;
 
  | process 2 name        = &nbsp;
 
  | process 2 date        = 2014
 
  | process 2 date        = 2014
Line 83: Line 83:
 
* MediaTek
 
* MediaTek
 
** {{mediatek|Helio}}
 
** {{mediatek|Helio}}
 +
* Fujitsu
 +
** {{fujitsu|SPARC64}}
 +
* Oracle
 +
** {{oracle|SPARC M8}}
 
{{expand list}}
 
{{expand list}}
  
Line 92: Line 96:
 
* Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
 
* Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
  
[[Category:Lithography]]
+
[[category:lithography]]

Latest revision as of 22:04, 20 May 2018

The 20 nanometer (20 nm) lithography process is a half-node semiconductor manufacturing process used as a stopgap between the 22 nm and 16 nm processes. The term "20 nm" is simply a commercial name for a generation of a certain size and its technology, as opposed to gate length or half pitch. Commercial integrated circuit manufacturing using 20 nm process began in 2014. This technology superseded by commercial 16 nm process.

Industry[edit]

 
Process Name
1st Production
Lithography Lithography
Immersion
Exposure
Wafer Type
Size
Transistor Type
Voltage
Metal Layers
 
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcell High-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcell eDRAM
TSMC Common Platform Alliance
The Common Platform Alliance 20 nm node was a collaboration between IBM, Samsung, GlobalFoundries, Toshiba, STMicroelectronics
   
3Q 2014 2014
193 nm 193 nm
Yes Yes
   
Bulk Bulk
300 mm 300 mm
Planar Planar
0.95 V 0.9 V
10  
Value 28 nm Δ Value 28 nm Δ
    20 nm 0.67x
90 nm 0.77x 86 nm 0.76
64 nm 0.67x 64 nm 0.71x
    0.102 µm²  
0.081 µm² 0.64x 0.081 µm² 0.68x
       
       

TSMC[edit]

TSMC demonstrated their 112 Mebibit SRAM wafer from their 20 nm HKMG process at the 2013 IEEE ISSCC.

20 nm Microprocessors[edit]

This list is incomplete; you can help by expanding it.

20 nm Microarchitectures[edit]

This list is incomplete; you can help by expanding it.

References[edit]

  • Chang, Jonathan, et al. "A 20nm 112Mb SRAM in High-к metal-gate with assist circuitry for low-leakage and low-V MIN applications." Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International. IEEE, 2013.
  • Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.