From WikiChip
Difference between revisions of "20 nm lithography process"

(Industry)
(Industry)
Line 32: Line 32:
 
  | process 1 dram Δ      =  
 
  | process 1 dram Δ      =  
 
<!-- IBM -->
 
<!-- IBM -->
  | process 2 fab          = [[IBM]]
+
  | process 2 fab          = IBM Common Platform Alliance <info>The '''IBM Common Platform Alliance''' is a joint effort by [[IBM]], [[Samsung]], [[GlobalFoundries]], [[Toshiba]], [[STMicroelectronics]]</info>
 
  | process 2 name        = &nbsp;
 
  | process 2 name        = &nbsp;
 
  | process 2 date        = 2014
 
  | process 2 date        = 2014
Line 58: Line 58:
 
  | process 2 dram        = &nbsp;
 
  | process 2 dram        = &nbsp;
 
  | process 2 dram Δ      = &nbsp;
 
  | process 2 dram Δ      = &nbsp;
<!-- Samsung -->
 
| process 3 fab          = [[Samsung]]
 
| process 3 name        = 20LPM
 
| process 3 date        = 2014
 
| process 3 lith        = 193 nm
 
| process 3 immersion    = Yes
 
| process 3 exposure    = &nbsp;
 
| process 3 wafer type  = Bulk
 
| process 3 wafer size  = 300 mm
 
| process 3 transistor  = Planar
 
| process 3 volt        = 0.9 V
 
| process 3 layers      = &nbsp;
 
| process 3 delta from  = [[28 nm]] Δ
 
| process 3 gate len    = 20 nm
 
| process 3 gate len Δ  = 0.67x
 
| process 3 cpp          = 86 nm
 
| process 3 cpp Δ        = 0.76
 
| process 3 mmp          = 64 nm
 
| process 3 mmp Δ        = 0.71x
 
| process 3 sram hp      = 0.102 µm²
 
| process 3 sram hp Δ    = &nbsp;
 
| process 3 sram hd      = 0.081 µm²
 
| process 3 sram hd Δ    = 0.68x
 
| process 3 sram lv      = &nbsp;
 
| process 3 sram lv Δ    = &nbsp;
 
| process 3 dram        = &nbsp;
 
| process 3 dram Δ      = &nbsp;
 
<!-- GlobalFoundries -->
 
| process 4 fab          = [[GlobalFoundries]]
 
| process 4 name        = 20LPM
 
| process 4 date        = 2014
 
| process 4 lith        = 193 nm
 
| process 4 immersion    = Yes
 
| process 4 exposure    = &nbsp;
 
| process 4 wafer type  = Bulk
 
| process 4 wafer size  = 300 mm
 
| process 4 transistor  = Planar
 
| process 4 volt        = 0.9 V
 
| process 4 layers      = &nbsp;
 
| process 4 delta from  = [[28 nm]] Δ
 
| process 4 gate len    = 20 nm
 
| process 4 gate len Δ  = 0.67x
 
| process 4 cpp          = 86 nm
 
| process 4 cpp Δ        = 0.76
 
| process 4 mmp          = 64 nm
 
| process 4 mmp Δ        = 0.71x
 
| process 4 sram hp      = 0.102 µm²
 
| process 4 sram hp Δ    = &nbsp;
 
| process 4 sram hd      = 0.081 µm²
 
| process 4 sram hd Δ    = 0.68x
 
| process 4 sram lv      = &nbsp;
 
| process 4 sram lv Δ    = &nbsp;
 
| process 4 dram        = &nbsp;
 
| process 4 dram Δ      = &nbsp;
 
<!-- Toshiba -->
 
| process 5 fab          = [[Toshiba]]
 
| process 5 name        = &nbsp;
 
| process 5 date        = &nbsp;
 
| process 5 lith        = 193 nm
 
| process 5 immersion    = Yes
 
| process 5 exposure    = &nbsp;
 
| process 5 wafer type  = Bulk
 
| process 5 wafer size  = 300 mm
 
| process 5 transistor  = Planar
 
| process 5 volt        = 0.9 V
 
| process 5 layers      = &nbsp;
 
| process 5 delta from  = [[28 nm]] Δ
 
| process 5 gate len    = 20 nm
 
| process 5 gate len Δ  = 0.67x
 
| process 5 cpp          = 86 nm
 
| process 5 cpp Δ        = 0.76
 
| process 5 mmp          = 64 nm
 
| process 5 mmp Δ        = 0.71x
 
| process 5 sram hp      = 0.102 µm²
 
| process 5 sram hp Δ    = &nbsp;
 
| process 5 sram hd      = 0.081 µm²
 
| process 5 sram hd Δ    = 0.68x
 
| process 5 sram lv      = &nbsp;
 
| process 5 sram lv Δ    = &nbsp;
 
| process 5 dram        = &nbsp;
 
| process 5 dram Δ      = &nbsp;
 
<!-- STMicroelectronics -->
 
| process 6 fab          = [[STMicroelectronics]]
 
| process 6 name        = &nbsp;
 
| process 6 date        = &nbsp;
 
| process 6 lith        = 193 nm
 
| process 6 immersion    = Yes
 
| process 6 exposure    = &nbsp;
 
| process 6 wafer type  = Bulk
 
| process 6 wafer size  = 300 mm
 
| process 6 transistor  = Planar
 
| process 6 volt        = 0.9 V
 
| process 6 layers      = &nbsp;
 
| process 6 delta from  = [[28 nm]] Δ
 
| process 6 gate len    = 20 nm
 
| process 6 gate len Δ  = 0.67x
 
| process 6 cpp          = 86 nm
 
| process 6 cpp Δ        = 0.76
 
| process 6 mmp          = 64 nm
 
| process 6 mmp Δ        = 0.71x
 
| process 6 sram hp      = 0.102 µm²
 
| process 6 sram hp Δ    = &nbsp;
 
| process 6 sram hd      = 0.081 µm²
 
| process 6 sram hd Δ    = 0.68x
 
| process 6 sram lv      = &nbsp;
 
| process 6 sram lv Δ    = &nbsp;
 
| process 6 dram        = &nbsp;
 
| process 6 dram Δ      = &nbsp;
 
 
}}
 
}}
  

Revision as of 00:57, 6 April 2017

The 20 nanometer (20 nm) lithography process is a half-node semiconductor manufacturing process used as a stopgap between the 22 nm and 16 nm processes. The term "20 nm" is simply a commercial name for a generation of a certain size and its technology, as opposed to gate length or half pitch. Commercial integrated circuit manufacturing using 20 nm process began in 2014. This technology superseded by commercial 16 nm process.

Industry

 
Process Name
1st Production
Lithography Lithography
Immersion
Exposure
Wafer Type
Size
Transistor Type
Voltage
Metal Layers
 
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcell High-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcell eDRAM
TSMC IBM Common Platform Alliance
The IBM Common Platform Alliance is a joint effort by IBM, Samsung, GlobalFoundries, Toshiba, STMicroelectronics
   
2014 2014
193 nm 193 nm
Yes Yes
   
Bulk Bulk
300 mm 300 mm
Planar Planar
0.95 V 0.9 V
10  
Value 28 nm Δ Value 28 nm Δ
    20 nm 0.67x
90 nm 0.77x 86 nm 0.76
64 nm 0.67x 64 nm 0.71x
    0.102 µm²  
0.081 µm² 0.64x 0.081 µm² 0.68x
       
       

TSMC

TSMC demonstrated their 112 Mebibit SRAM wafer from their 20 nm HKMG process at the 2013 IEEE ISSCC.

20 nm Microprocessors

This list is incomplete; you can help by expanding it.

20 nm Microarchitectures

This list is incomplete; you can help by expanding it.

References

  • Chang, Jonathan, et al. "A 20nm 112Mb SRAM in High-к metal-gate with assist circuitry for low-leakage and low-V MIN applications." Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International. IEEE, 2013.
  • Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.