From WikiChip
Difference between revisions of "280 nm lithography process"

(Industry)
(Industry)
Line 3: Line 3:
  
 
== Industry ==
 
== Industry ==
Around 1996 Intel introduced a stopgap shrink between [[0.35 µm]] and [[0.25 µm]]. Unlike [[0.35 µm]] which used BiCMOS process for their {{intel|Pentium}} and {{intel|Pentium Pro}} processors, the 0.28 µm process was a standard CMOS process. The process was used in Intel's {{intel|P55C}} and  
+
Around 1996 Intel introduced a stopgap shrink between [[0.35 µm]] and [[0.25 µm]]. Unlike [[0.35 µm]] which used BiCMOS process for their {{intel|Pentium}} and {{intel|Pentium Pro}} processors, the 0.28 µm process was a standard CMOS process. Featuring a smaller transistor gate pitch, the process shared similar metal layer sizes to the [[0.35 µm]] (this is why some Intel documents refer to it as "0.35µm"). The process was used in Intel's {{intel|P55C}} and {{intel|P6|l=arch}} {{intel|Klamath|l=core}} core-based and models. The semi-shrink which resulted in smaller transistors and improved switching speed was done to compensate for the return to CMOS (i.e., lack of fast bipolar transistors).  
{{intel|P6|l=arch}} {{intel|Klamath|l=core}} core-based and models. The semi-shrink which resulted in smaller transistors and improved switching speed was done to compensate for the return to CMOS (i.e., lack of fast bipolar transistors).
 
 
{{scrolling table/top|style=text-align: right; | first=Fab
 
{{scrolling table/top|style=text-align: right; | first=Fab
 
  |Process Name
 
  |Process Name
 
  |1st Production
 
  |1st Production
 +
|Voltage
 
  |Contacted Gate Pitch
 
  |Contacted Gate Pitch
 
  |Interconnect Pitch (M1P)
 
  |Interconnect Pitch (M1P)
Line 20: Line 20:
 
|-
 
|-
 
| 1996 || 1997
 
| 1996 || 1997
 +
|-
 +
| 2.8 V || ? V
 
|-  
 
|-  
 
| ? nm || ? nm
 
| ? nm || ? nm

Revision as of 20:16, 30 March 2017

The 280 nanometer (280 nm) lithography process is was semiconductor manufacturing process following the 350 nm process. Commercial integrated circuit manufacturing using 280 nm process began in late 1990s. 280 nm and was phased out and later replaced by 250 nm, 220 nm, and 180 nm processes.

Industry

Around 1996 Intel introduced a stopgap shrink between 0.35 µm and 0.25 µm. Unlike 0.35 µm which used BiCMOS process for their Pentium and Pentium Pro processors, the 0.28 µm process was a standard CMOS process. Featuring a smaller transistor gate pitch, the process shared similar metal layer sizes to the 0.35 µm (this is why some Intel documents refer to it as "0.35µm"). The process was used in Intel's P55C and P6 Klamath core-based and models. The semi-shrink which resulted in smaller transistors and improved switching speed was done to compensate for the return to CMOS (i.e., lack of fast bipolar transistors).

Fab
Process Name​
1st Production​
Voltage​
Contacted Gate Pitch​
Interconnect Pitch (M1P)​
Metal Layers​
SRAM bit cell
Intel Motorola
P854.5? HiPerMOS 3
1996 1997
2.8 V  ? V
 ? nm  ? nm
 ? nm  ? nm
4  ?
 ? µm²  ? µm²

280 nm Microprocessors

This list is incomplete; you can help by expanding it.

280 nm Microarchitectures

This list is incomplete; you can help by expanding it.