From WikiChip
Difference between revisions of "8 µm lithography process"

m (Bot: Automated text replacement (-Category:Lithography +category:lithography))
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
{{lithography processes}}
 
{{lithography processes}}
The '''8 µm lithography process''' was the semiconductor process technology used by some semiconductor companies during the late 1960s through the early 1970s. This process had an effective channel length of roughly 8 µm between the source and drain (Poly-SI channel implant). The typical [[wafer]] size for this process at companies such as [[Fairchild]] and [[TI]] were 2 inch (51 mm). This process was later superseded by [[6 µm]], [[5 µm]], and [[3 µm]] processes.
+
The '''8 µm lithography process''' (8-micron) was the semiconductor process technology used for early FET devices by leading semiconductor companies during the late early 1970s. This process had a smallest feature or gate length of roughly 8 µm between the source and drain (Poly-SI channel implant). The typical [[wafer size]] for this process at companies such as [[Fairchild]] and [[TI]] was 2-inch (51 mm). This process was later superseded by [[6 µm]], [[5 µm]], and [[3 µm]] processes.
  
 
== Industry ==
 
== Industry ==
{{scrolling table/top|style=text-align: right; | first=Fab
+
The 8-micron process was used by Intel for many of their memory chips in the early 1970s such as the {{intel|2104}} which was released in 1972 and became the first truly widely used DRAM chip. Those chips used Si-gate [[nMOS]] transistors using a polysilicon word line and an aluminum metal bit line. Alternatively to that was Mostek's which created a 4 Kib chip using an aluminum metal word line and drain diffusion for the bit line<ref>Rideout, V. Leo. "One-device cells for dynamic random-access memories: A tutorial." IEEE Transactions on Electron Devices 26.6 (1979): 839-852.</ref>.
  |Process Name
+
 
  |1st Production
+
{{#invoke:process nodes
  |Contacted Gate Pitch
+
| compare
  |Interconnect Pitch
+
| fab 1 name link  = intel
  |Metal Layers
+
| fab 1 proc name  =
  |Technology
+
| fab 1 name        = Intel
  |Wafer
+
| fab 1 date        = 1972
 +
| fab 1 wafer.type  = Bulk
 +
| fab 1 wafer.size  = 51 mm
 +
| fab 1 xtor.tech  = nMOS, pMOS
 +
| fab 1 xtor.type  = Planar
 +
| fab 1 xtor.volt  = 5 V
 +
| fab 1 layers      = 1, 2
 +
| fab 1 diff from  = [[10 µm]] Δ
 +
| fab 1 xtor.lg    = 8 µm
 +
| fab 1 xtor.lgΔ    = 0.80x
 +
| fab 1 xtor.cpp    =
 +
| fab 1 xtor.cppΔ  =
 +
| fab 1 xtor.mmp    =
 +
| fab 1 xtor.mmpΔ  =
 +
| fab 1 sram.hp    =
 +
| fab 1 sram.hpΔ    =
 +
| fab 1 sram.hd    = 1280 µm²
 +
| fab 1 sram.hdΔ    =
 +
| fab 1 sram.lv    =
 +
| fab 1 sram.lvΔ    =
 +
| fab 1 dram.edram  =
 +
| fab 1 dram.edramΔ =
 +
 
 +
| fab 2 name link  = ti
 +
| fab 2 name        = TI
 +
| fab 2 proc name  =
 +
| fab 2 date        =
 +
| fab 2 wafer.type  = Bulk
 +
| fab 2 wafer.size  =
 +
| fab 2 xtor.tech  = pMOS
 +
| fab 2 xtor.type  = Planar
 +
| fab 2 xtor.volt  = 5 V
 +
| fab 2 layers      =
 +
| fab 2 diff from  = [[10 µm]] Δ
 +
| fab 2 xtor.lg    = 8 µm
 +
| fab 2 xtor.lgΔ    = 0.80x
 +
| fab 2 xtor.cpp    =
 +
| fab 2 xtor.cppΔ  =
 +
| fab 2 xtor.mmp    =
 +
| fab 2 xtor.mmpΔ  =
 +
| fab 2 sram.hp    =
 +
| fab 2 sram.hpΔ    =
 +
| fab 2 sram.hd    =
 +
| fab 2 sram.hdΔ    =
 +
| fab 2 sram.lv    =
 +
| fab 2 sram.lvΔ    =
 +
| fab 2 dram.edram  =
 +
| fab 2 dram.edramΔ =
 +
 
 +
| fab 3 name link  = fairchild
 +
| fab 3 name        = Fairchild
 +
| fab 3 proc name  =
 +
| fab 3 date        =
 +
| fab 3 wafer.type  = Bulk
 +
| fab 3 wafer.size  =
 +
| fab 3 xtor.tech  = pMOS
 +
| fab 3 xtor.type  = Planar
 +
| fab 3 xtor.volt  = 5 V
 +
| fab 3 layers      =
 +
| fab 3 diff from  = [[10 µm]] Δ
 +
| fab 3 xtor.lg    = 8 µm
 +
| fab 3 xtor.lgΔ    = 0.80x
 +
| fab 3 xtor.cpp    =
 +
| fab 3 xtor.cppΔ  =
 +
| fab 3 xtor.mmp    =
 +
| fab 3 xtor.mmpΔ  =
 +
| fab 3 sram.hp    =
 +
| fab 3 sram.hpΔ    =
 +
| fab 3 sram.hd    =
 +
| fab 3 sram.hdΔ    =  
 +
  | fab 3 sram.lv    =
 +
  | fab 3 sram.lvΔ    =
 +
  | fab 3 dram.edram  =
 +
  | fab 3 dram.edramΔ =
 +
 
 +
  | fab 4 name link  = mos technology
 +
  | fab 4 name        = MOS Technology
 +
  | fab 4 proc name  =
 +
| fab 4 date        = 1974
 +
| fab 4 wafer.type  = Bulk
 +
| fab 4 wafer.size  =
 +
| fab 4 xtor.tech  = nMOS
 +
| fab 4 xtor.type  = Planar
 +
| fab 4 xtor.volt  = 5 V
 +
| fab 4 layers      =
 +
| fab 4 diff from  = @
 +
| fab 4 xtor.lg    = 8 µm
 +
| fab 4 xtor.lgΔ    =
 +
| fab 4 xtor.cpp    =
 +
| fab 4 xtor.cppΔ  =
 +
| fab 4 xtor.mmp    =
 +
| fab 4 xtor.mmpΔ  =
 +
| fab 4 sram.hp    =
 +
| fab 4 sram.hpΔ    =
 +
| fab 4 sram.hd    =
 +
| fab 4 sram.hdΔ    =
 +
| fab 4 sram.lv    =
 +
| fab 4 sram.lvΔ    =
 +
| fab 4 dram.edram  =
 +
| fab 4 dram.edramΔ =
 +
 
 +
| fab 5 name link  = mostok
 +
| fab 5 name        = MOSTEK
 +
| fab 5 proc name  =
 +
| fab 5 date        = 1972
 +
| fab 5 wafer.type  = Bulk
 +
| fab 5 wafer.size  =
 +
| fab 5 xtor.tech  = nMOS
 +
| fab 5 xtor.type  = Planar
 +
| fab 5 xtor.volt  = 5 V
 +
| fab 5 layers      =
 +
| fab 5 diff from  = @
 +
| fab 5 xtor.lg    = 8 µm
 +
| fab 5 xtor.lgΔ    =
 +
| fab 5 xtor.cpp    =
 +
| fab 5 xtor.cppΔ  =
 +
| fab 5 xtor.mmp    =
 +
| fab 5 xtor.mmpΔ  =
 +
| fab 5 sram.hp    =
 +
| fab 5 sram.hpΔ    =
 +
| fab 5 sram.hd    =
 +
| fab 5 sram.hdΔ    =
 +
| fab 5 sram.lv    =
 +
| fab 5 sram.lvΔ    =
 +
| fab 5 dram.edram  =
 +
| fab 5 dram.edramΔ =
 
}}
 
}}
{{scrolling table/mid}}
 
|-
 
! [[Intel]] !! [[TI]] !! [[Fairchild]] !! [[MOS Technology]]
 
|- style="text-align: center;"
 
|  || || || &nbsp;
 
|- style="text-align: center;"
 
| 1970 || 1969 || 1969 || 1974
 
|-
 
| ? nm  || ? nm || ? nm || ? nm
 
|-
 
| ? nm  || ? nm || ? nm || ? nm
 
|-
 
| 2 || 2 || 2 ||
 
|-
 
| pMOS || pMOS || pMOS || depletion-mode nMOS
 
|-
 
| 51 mm || ||  ||
 
{{scrolling table/end}}
 
  
 
== 8 µm Microprocessors ==
 
== 8 µm Microprocessors ==
Line 40: Line 147:
 
== 8 µm Chips ==
 
== 8 µm Chips ==
 
* Intel
 
* Intel
** {{intel|1103}}, 1Kb DRAM, worlds first commercial DRAM
+
** {{intel|1103}}, 1 Kib DRAM, world's first commercial DRAM
 
+
** {{intel|2104}}, 4 Kib DRAM, world first widely used & mass produced (especially in the [[personal computer|PC]])
  
 +
== References ==
 +
{{reflist}}
 +
* Dr. Neil Berglund, Intel Corporation; The evolution of MOS process technology.
  
 
{{stub}}
 
{{stub}}
[[Category:Lithography]]
+
[[category:lithography]]

Latest revision as of 22:04, 20 May 2018

The 8 µm lithography process (8-micron) was the semiconductor process technology used for early FET devices by leading semiconductor companies during the late early 1970s. This process had a smallest feature or gate length of roughly 8 µm between the source and drain (Poly-SI channel implant). The typical wafer size for this process at companies such as Fairchild and TI was 2-inch (51 mm). This process was later superseded by 6 µm, 5 µm, and 3 µm processes.

Industry[edit]

The 8-micron process was used by Intel for many of their memory chips in the early 1970s such as the 2104 which was released in 1972 and became the first truly widely used DRAM chip. Those chips used Si-gate nMOS transistors using a polysilicon word line and an aluminum metal bit line. Alternatively to that was Mostek's which created a 4 Kib chip using an aluminum metal word line and drain diffusion for the bit line[1].

Foundry
Process Name
1st Production
WaferType
Size
TransistorTechnology
Type
Voltage
Metal Layers
 
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcellHigh-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcelleDRAM
IntelTIFairchildMOS TechnologyMOSTEK
     
197219741972
BulkBulkBulkBulkBulk
51 mm    
nMOS, pMOSpMOSpMOSnMOSnMOS
PlanarPlanarPlanarPlanarPlanar
5 V5 V5 V5 V5 V
1, 2
Value10 µm ΔValue10 µm ΔValue10 µm ΔValueN/AValueN/A
8 µm0.80x8 µm0.80x8 µm0.80x8 µm8 µm
        
        
        
1280 µm²       
        
        

8 µm Microprocessors[edit]

This list is incomplete; you can help by expanding it.

8 µm Chips[edit]

  • Intel
    • 1103, 1 Kib DRAM, world's first commercial DRAM
    • 2104, 4 Kib DRAM, world first widely used & mass produced (especially in the PC)

References[edit]

  1. Rideout, V. Leo. "One-device cells for dynamic random-access memories: A tutorial." IEEE Transactions on Electron Devices 26.6 (1979): 839-852.
  • Dr. Neil Berglund, Intel Corporation; The evolution of MOS process technology.
Text document with shapes.svg This article is still a stub and needs your attention. You can help improve this article by editing this page and adding the missing information.