From WikiChip
Difference between revisions of "3 nm lithography process"

m (Bot: Automated text replacement (-Category:Lithography +category:lithography))
(P1280 is Intel 14A/12A (16A is still P1278))
(23 intermediate revisions by 17 users not shown)
Line 1: Line 1:
 
{{lithography processes}}
 
{{lithography processes}}
The '''3 nanometer (3 nm or 30 Å) lithography process''' is a [[technology node]] semiconductor manufacturing process following the [[5 nm lithography process|5 nm process]] node. Commercial [[integrated circuit]] manufacturing using 5 nm process is set to begin sometimes around 2023.
+
The '''3 nanometer (3 nm or 30 Å) lithography process''' is a [[technology node]] semiconductor manufacturing process following the [[5 nm lithography process|5 nm process]] node. Commercial [[integrated circuit]] manufacturing using 3 nm process is set to begin some time around 2023.
  
 
The term "3 nm" is simply a commercial name for a generation of a certain size and its technology, and '''does not''' represent any geometry of the transistor.
 
The term "3 nm" is simply a commercial name for a generation of a certain size and its technology, and '''does not''' represent any geometry of the transistor.
Line 11: Line 11:
 
<!-- Intel -->
 
<!-- Intel -->
 
  | process 1 fab          = [[Intel]]
 
  | process 1 fab          = [[Intel]]
  | process 1 name        = P1280? (CPU), P1281? (SoC)
+
  | process 1 name        = P1278 (CPU), P1279? (SoC)
  | process 1 date        = &nbsp;
+
  | process 1 date        = 2H 2023
 
  | process 1 lith        = EUV
 
  | process 1 lith        = EUV
 
  | process 1 immersion    = &nbsp;
 
  | process 1 immersion    = &nbsp;
 
  | process 1 exposure    = SE
 
  | process 1 exposure    = SE
 
  | process 1 wafer type  = Bulk
 
  | process 1 wafer type  = Bulk
  | process 1 wafer size  = 300 nm
+
  | process 1 wafer size  = 300 mm
  | process 1 transistor  = &nbsp;
+
  | process 1 transistor  = FinFET
 
  | process 1 volt        = &nbsp;
 
  | process 1 volt        = &nbsp;
 
  | process 1 delta from  = [[5 nm]] Δ
 
  | process 1 delta from  = [[5 nm]] Δ
Line 43: Line 43:
 
<!-- TSMC -->
 
<!-- TSMC -->
 
  | process 2 fab          = [[TSMC]]
 
  | process 2 fab          = [[TSMC]]
  | process 2 name        = &nbsp;
+
  | process 2 name        = N3, N3E <info>N3 Enhanced</info>
  | process 2 date        = &nbsp;
+
  | process 2 date        = 2H 2022
 
  | process 2 lith        = EUV
 
  | process 2 lith        = EUV
 
  | process 2 immersion    = &nbsp;
 
  | process 2 immersion    = &nbsp;
 
  | process 2 exposure    = SE
 
  | process 2 exposure    = SE
 
  | process 2 wafer type  = Bulk
 
  | process 2 wafer type  = Bulk
  | process 2 wafer size  = 300 nm
+
  | process 2 wafer size  = 300 mm
  | process 2 transistor  = &nbsp;
+
  | process 2 transistor  = FinFET
 
  | process 2 volt        = &nbsp;
 
  | process 2 volt        = &nbsp;
 
  | process 2 delta from  = [[5 nm]] Δ
 
  | process 2 delta from  = [[5 nm]] Δ
Line 73: Line 73:
 
  | process 2 dram        = &nbsp;
 
  | process 2 dram        = &nbsp;
 
  | process 2 dram Δ      = &nbsp;
 
  | process 2 dram Δ      = &nbsp;
<!-- GlobalFoundries -->
 
| process 3 fab          = [[GlobalFoundries]]
 
| process 3 name        = &nbsp;
 
| process 3 date        = &nbsp;
 
| process 3 lith        = EUV
 
| process 3 immersion    = &nbsp;
 
| process 3 exposure    = SE
 
| process 3 wafer type  = Bulk
 
| process 3 wafer size  = 300 nm
 
| process 3 transistor  = &nbsp;
 
| process 3 volt        = &nbsp;
 
| process 3 delta from  = [[5 nm]] Δ
 
| process 3 fin pitch    = &nbsp;
 
| process 3 fin pitch Δ  = &nbsp;
 
| process 3 fin width    = &nbsp;
 
| process 3 fin width Δ  = &nbsp;
 
| process 3 fin height  = &nbsp;
 
| process 3 fin height Δ = &nbsp;
 
| process 3 gate len    = &nbsp;
 
| process 3 gate len Δ  = &nbsp;
 
| process 3 cpp          = &nbsp;
 
| process 3 cpp Δ        = &nbsp;
 
| process 3 mmp          = &nbsp;
 
| process 3 mmp Δ        = &nbsp;
 
| process 3 sram hp      = &nbsp;
 
| process 3 sram hp Δ    = &nbsp;
 
| process 3 sram hd      = &nbsp;
 
| process 3 sram hd Δ    = &nbsp;
 
| process 3 sram lv      = &nbsp;
 
| process 3 sram lv Δ    = &nbsp;
 
| process 3 dram        = &nbsp;
 
| process 3 dram Δ      = &nbsp;
 
 
<!-- Samsung -->
 
<!-- Samsung -->
 
  | process 4 fab          = [[Samsung]]
 
  | process 4 fab          = [[Samsung]]
  | process 4 name        = 3LLP<info>3nm Low Power Plus</info>
+
  | process 4 name        = 3GAE<info>3nm Gate All Around Early</info>, 3GAP<info>3nm Gate All Around Plus</info>
 
  | process 4 date        = &nbsp;
 
  | process 4 date        = &nbsp;
 
  | process 4 lith        = EUV
 
  | process 4 lith        = EUV
Line 113: Line 81:
 
  | process 4 exposure    = SE
 
  | process 4 exposure    = SE
 
  | process 4 wafer type  = Bulk
 
  | process 4 wafer type  = Bulk
  | process 4 wafer size  = 300 nm
+
  | process 4 wafer size  = 300 mm
 
  | process 4 transistor  = GAA
 
  | process 4 transistor  = GAA
 
  | process 4 volt        = &nbsp;
 
  | process 4 volt        = &nbsp;
Line 138: Line 106:
 
  | process 4 dram Δ      = &nbsp;
 
  | process 4 dram Δ      = &nbsp;
 
}}
 
}}
 
+
==== P1278 ====
 +
Intel's 5-nanometer (renamed as Intel 20A) process node is expected to ramp around the 2H2024/2025 timeframe.
 
=== Samsung ===
 
=== Samsung ===
 
On May 24 2017 Samsung announced they will be switching to a transistor they call ''Multi-Bridge-Channel FET'' (''MBCFET''), an extension of a  [[Gate-all-around]] (GAA) FET. This is planned for somewhere after the 5nm node but the exact timeline or specification is currently unknown.
 
On May 24 2017 Samsung announced they will be switching to a transistor they call ''Multi-Bridge-Channel FET'' (''MBCFET''), an extension of a  [[Gate-all-around]] (GAA) FET. This is planned for somewhere after the 5nm node but the exact timeline or specification is currently unknown.
 +
 +
=== TSMC ===
 +
N3 technology will offer up to 70% logic density gain, up to 15% speed improvement at the same power and up to 30% power reduction at the same speed as compared with N5 technology (According to TSMCs website). If this holds true we could see 300+ MT/mm2.
  
 
== 3 nm Microprocessors==
 
== 3 nm Microprocessors==
 +
 
{{expand list}}
 
{{expand list}}
  

Revision as of 18:04, 29 December 2023

The 3 nanometer (3 nm or 30 Å) lithography process is a technology node semiconductor manufacturing process following the 5 nm process node. Commercial integrated circuit manufacturing using 3 nm process is set to begin some time around 2023.

The term "3 nm" is simply a commercial name for a generation of a certain size and its technology, and does not represent any geometry of the transistor.

Industry

Symbol version future.svg Preliminary Data! Information presented in this article deal with future products, data, features, and specifications that have yet to be finalized, announced, or released. Information may be incomplete and can change by final release.


 
Process Name
1st Production
Lithography Lithography
Immersion
Exposure
Wafer Type
Size
Transistor Type
Voltage
 
Fin Pitch
Width
Height
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcell High-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcell eDRAM
Intel TSMC Samsung
P1278 (CPU), P1279? (SoC) N3, N3E
N3 Enhanced
3GAE
3nm Gate All Around Early
, 3GAP
3nm Gate All Around Plus
2H 2023 2H 2022  
EUV EUV EUV
     
SE SE SE
Bulk Bulk Bulk
300 mm 300 mm 300 mm
FinFET FinFET GAA
     
Value 5 nm Δ Value 5 nm Δ Value 5 nm Δ
        N/A
       
       
           
           
           
           
           
           
           

P1278

Intel's 5-nanometer (renamed as Intel 20A) process node is expected to ramp around the 2H2024/2025 timeframe.

Samsung

On May 24 2017 Samsung announced they will be switching to a transistor they call Multi-Bridge-Channel FET (MBCFET), an extension of a Gate-all-around (GAA) FET. This is planned for somewhere after the 5nm node but the exact timeline or specification is currently unknown.

TSMC

N3 technology will offer up to 70% logic density gain, up to 15% speed improvement at the same power and up to 30% power reduction at the same speed as compared with N5 technology (According to TSMCs website). If this holds true we could see 300+ MT/mm2.

3 nm Microprocessors

This list is incomplete; you can help by expanding it.

3 nm Microarchitectures

This list is incomplete; you can help by expanding it.

References

  • Kinam Kim, President of Semiconductor Business, announced MBCFET for the node after 5 nm, May 24, 2017