(→Microarchitectures) |
(→GPU Microarchitectures) |
||
(15 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{intel title|Microarchitectures}} | {{intel title|Microarchitectures}} | ||
Below is a list of [[Intel]] [[microarchitectures]]: | Below is a list of [[Intel]] [[microarchitectures]]: | ||
− | == Microarchitectures == | + | == CPU Microarchitectures == |
+ | <table class="wikitable sortable"> | ||
+ | <tr><th colspan="12" style="background:#D6D6FF;">Intel CPU Microarchitectures</th></tr> | ||
+ | <tr><th colspan="3">General</th><th colspan="5">Details</th></tr> | ||
+ | <tr><th>µarch</th><th>Introduction</th><th>Phase-out</th><th>[[technology node|Process]]</th><th>Cores</th><th colspan="3">Pipeline</th></tr> | ||
{{#ask: | {{#ask: | ||
+ | [[Category:cpu microarchitectures by intel]] | ||
[[instance of::microarchitecture]] | [[instance of::microarchitecture]] | ||
[[designer::Intel]] | [[designer::Intel]] | ||
+ | |?full page name | ||
|?name | |?name | ||
− | |?first launched | + | |?first launched#ISO |
− | |?phase-out | + | |?phase-out#ISO |
|?process | |?process | ||
|?core count | |?core count | ||
|?pipeline stages | |?pipeline stages | ||
+ | |?pipeline stages (min) | ||
+ | |?pipeline stages (max) | ||
|sort=first launched | |sort=first launched | ||
|order=ascending | |order=ascending | ||
− | |format=table | + | |format=template |
− | | | + | |template=proc table 2 |
+ | |userparam=9 | ||
+ | |valuesep=, | ||
+ | |mainlabel=- | ||
}} | }} | ||
+ | </table> | ||
+ | |||
+ | == GPU Microarchitectures == | ||
+ | <table class="wikitable sortable"> | ||
+ | <tr><th colspan="12" style="background:#D6D6FF;">Intel GPU Microarchitectures</th></tr> | ||
+ | <tr><th colspan="3">General</th><th colspan="5">Details</th></tr> | ||
+ | <tr><th>µarch</th><th>Introduction</th><th>Phase-out</th><th>[[technology node|Process]]</th></tr> | ||
+ | {{#ask: | ||
+ | [[Category:gpu microarchitectures by intel]] | ||
+ | [[instance of::microarchitecture]] | ||
+ | [[designer::Intel]] | ||
+ | |?full page name | ||
+ | |?name | ||
+ | |?first launched#ISO | ||
+ | |?phase-out#ISO | ||
+ | |?process | ||
+ | |sort=first launched | ||
+ | |order=ascending | ||
+ | |format=template | ||
+ | |template=proc table 2 | ||
+ | |userparam=5 | ||
+ | |valuesep=, | ||
+ | |mainlabel=- | ||
+ | }} | ||
+ | </table> | ||
+ | |||
+ | == Many-core == | ||
+ | {{work-in-progress}} | ||
+ | |||
+ | === Initial effort & Polaris === | ||
+ | Intel actual large effort research into the area of [[many-core]] started after the February 2004 [[Intel Developer Forum]] following Pradeep Dubey famous keynote titled "The Era of Tera." Around the [[2004]]-[[2005]] Intel formed a number of strategic research projects to explorer and study the feasibility and challenges of many-core and tera-scale processing. One of the earliest examples of such project was the {{intel|Tera-scale Computing Research Program}} which was unveiled by Justin Rattner, then-CTO, at the spring 2006 Intel Develop Forum. | ||
+ | |||
+ | The first product to come directly from that project was {{intel|Polaris|l=arch}}, an 80-core chip designed using modular tiles that could scale in the x- and y- directions using a routing system that interconnected all the tiles in a [[mesh topology]]. Fabricated on a [[65 nm process]], the chip was around 275 mm² and incorporated around 100M transistors. The chip also attempted to solve some of the inherent problems dealing with a large amount of cores such as the bandwidth. [[3D IC|3D]] [[stacked]] SRAM was utilized to achieve bandwidths of over 1 Tb/s. Operating as high as 5.7 GHz, the chip could reach over 1.8 [[teraFLOPS]] of sustained performance. | ||
+ | |||
+ | === Larrabee === | ||
+ | {{empty section}} |
Latest revision as of 19:59, 8 February 2022
Below is a list of Intel microarchitectures:
Contents
CPU Microarchitectures[edit]
... further resultsIntel CPU Microarchitectures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
General | Details | ||||||||||
µarch | Introduction | Phase-out | Process | Cores | Pipeline | ||||||
80386 | 1984-03-01 | 1989-01-01 | 1,500 nm 1.5 μm 0.0015 mm | ||||||||
80486 | 1989-04-10 | 1995-01-01 | 1,000 nm 1 μm , 800 nm0.001 mm 0.8 μm , 600 nm8.0e-4 mm 0.6 μm 6.0e-4 mm | ||||||||
P5 | 1993-04-01 | 1995-10-01 | 600 nm 0.6 μm 6.0e-4 mm | ||||||||
P6 | 1995-10-01 | 2000-12-01 | 350 nm 0.35 μm , 250 nm3.5e-4 mm 0.25 μm 2.5e-4 mm | ||||||||
NetBurst | 2000-11-20 | 2006-04-01 | 180 nm 0.18 μm 1.8e-4 mm | ||||||||
Merced | 2001-06-01 | 180 nm 0.18 μm 1.8e-4 mm | 1 | ||||||||
McKinley | 2002-07-08 | 180 nm 0.18 μm 1.8e-4 mm | 1, 2 | ||||||||
Pentium M | 2003-01-01 | 2005-01-01 | 130 nm 0.13 μm , 90 nm1.3e-4 mm 0.09 μm 9.0e-5 mm | ||||||||
Madison | 2003-06-30 | 130 nm 0.13 μm 1.3e-4 mm | 1 | ||||||||
Madison 9M | 2004-11-08 | 130 nm 0.13 μm 1.3e-4 mm | 1 | ||||||||
Modified Pentium M | 2006-01-01 | 2008-01-01 | 65 nm 0.065 μm 6.5e-5 mm | ||||||||
Core | 2006-04-01 | 2009-05-01 | 65 nm 0.065 μm 6.5e-5 mm | ||||||||
Montecito | 2006-07-18 | 90 nm 0.09 μm 9.0e-5 mm | 1, 2 | ||||||||
Polaris | 2007-02-01 | 65 nm 0.065 μm 6.5e-5 mm | 80 | 9 | |||||||
Montvale | 2007-10-31 | 90 nm 0.09 μm 9.0e-5 mm | 1, 2 | ||||||||
Penryn | 2007-11-01 | 2008-09-01 | 45 nm 0.045 μm 4.5e-5 mm | ||||||||
Bonnell | 2008-03-02 | 2011-01-01 | 45 nm 0.045 μm 4.5e-5 mm | 1, 2 | 16 | 19 | |||||
Nehalem | 2008-08-01 | 2010-03-01 | 45 nm 0.045 μm 4.5e-5 mm | ||||||||
Rock Creek | 2009-12-01 | 45 nm 0.045 μm 4.5e-5 mm | 48 | ||||||||
Westmere | 2010-01-01 | 2011-08-01 | 32 nm 0.032 μm 3.2e-5 mm | ||||||||
Tukwila | 2010-02-08 | 65 nm 0.065 μm 6.5e-5 mm | 1, 2 | ||||||||
Knights Ferry | 2010-05-31 | 2011-01-01 | 45 nm 0.045 μm 4.5e-5 mm | 32 | |||||||
Sandy Bridge (client) | 2010-09-13 | 2012-11-01 | 32 nm 0.032 μm 3.2e-5 mm | 2, 4 | 14 | 19 | |||||
Saltwell | 2011-01-01 | 2013-01-01 | 32 nm 0.032 μm 3.2e-5 mm | 1, 2 | 16 | ||||||
Knights Corner | 2011-01-01 | 2013-01-01 | 22 nm 0.022 μm 2.2e-5 mm | 57, 60, 61 | |||||||
Ivy Bridge | 2011-05-04 | 2013-04-01 | 22 nm 0.022 μm 2.2e-5 mm | ||||||||
Poulson | 2012-11-08 | 32 nm 0.032 μm 3.2e-5 mm | 1, 2 | ||||||||
Silvermont | 2013-01-01 | 2015-01-01 | 22 nm 0.022 μm 2.2e-5 mm | 1, 2, 4, 8 | 12 | 14 | |||||
Haswell | 2013-06-04 | 2015-01-01 | 22 nm 0.022 μm 2.2e-5 mm | 2, 4, 6, 8, 16, 10, 12, 14, 18 | 14 | 19 | |||||
Broadwell | 2014-10-01 | 14 nm 0.014 μm 1.4e-5 mm | 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 | 14 | 19 | ||||||
Airmont | 2015-01-01 | 2017-01-01 | 14 nm 0.014 μm 1.4e-5 mm | 1, 2, 4, 8 | 12 | 14 | |||||
Skylake (client) | 2015-08-05 | 14 nm 0.014 μm 1.4e-5 mm | 2, 4 | 14 | 19 | ||||||
Kaby Lake | 2016-08-30 | 14 nm 0.014 μm 1.4e-5 mm | 2, 4 | 14 | 19 | ||||||
Goldmont | 2016-08-30 | 14 nm 0.014 μm 1.4e-5 mm | 2, 4, 8, 12, 16 | 12 | 14 | ||||||
Kittson | 2017-01-01 | 22 nm 0.022 μm 2.2e-5 mm | 1, 2 | ||||||||
Skylake (server) | 2017-05-04 | 14 nm 0.014 μm 1.4e-5 mm | 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 | 14 | 19 | ||||||
Coffee Lake | 2017-10-05 | 14 nm 0.014 μm 1.4e-5 mm | 14 | 19 | |||||||
Goldmont Plus | 2017-12-11 | 14 nm 0.014 μm 1.4e-5 mm | 2, 4 | ||||||||
Knights Mill | 2017-12-18 | 2019-08-09 | 14 nm 0.014 μm 1.4e-5 mm | ||||||||
Palm Cove | 2018-01-01 | 10 nm 0.01 μm 1.0e-5 mm | 2 | 14 | 19 | ||||||
Whiskey Lake | 2018-04-01 | 4 | 14 | 19 | |||||||
Amber Lake | 2018-04-01 | 14 nm 0.014 μm 1.4e-5 mm | 2 | 14 | 19 | ||||||
Cannon Lake | 2018-05-15 | 10 nm 0.01 μm 1.0e-5 mm | 2 | 14 | 19 | ||||||
Tremont | 2019-01-01 | 10 nm 0.01 μm 1.0e-5 mm | |||||||||
Snow Ridge | 2019-01-01 | 10 nm 0.01 μm 1.0e-5 mm | |||||||||
Sunny Cove | 2019-01-01 | 2021-01-01 | 10 nm 0.01 μm 1.0e-5 mm | 2, 4, 8, 10, 12, 16, 18, 20, 24, 26, 28, 32, 36, 38, 40 | 14 | 19 | |||||
Lakefield | 2019-01-01 | 22 nm 0.022 μm , 10 nm2.2e-5 mm 0.01 μm 1.0e-5 mm | 5 | ||||||||
Cascade Lake | 2019-01-01 | 14 nm 0.014 μm 1.4e-5 mm | 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 48, 56 | 14 | 19 | ||||||
Ice Lake (client) | 2019-05-27 | 10 nm 0.01 μm 1.0e-5 mm | 2, 4 | 14 | 19 | ||||||
Willow Cove | 2020-01-01 | 10 nm 0.01 μm 1.0e-5 mm | 2, 4, 6, 8 | 14 | 19 |
GPU Microarchitectures[edit]
Intel GPU Microarchitectures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
General | Details | ||||||||||
µarch | Introduction | Phase-out | Process | ||||||||
Gen1 | 1998-01-01 | ||||||||||
Gen2 | 2002-01-01 | ||||||||||
Gen3 | 2004-01-01 | ||||||||||
Gen3.5 | 2005-01-01 | 90 nm 0.09 μm 9.0e-5 mm | |||||||||
Gen4 | 2006-01-01 | 65 nm 0.065 μm 6.5e-5 mm | |||||||||
Gen5 | 2008-06-03 | 45 nm 0.045 μm 4.5e-5 mm | |||||||||
Larrabee | 2008-08-12 | 2010-01-01 | 32 nm 0.032 μm , 45 nm3.2e-5 mm 0.045 μm 4.5e-5 mm | ||||||||
Gen5.75 | 2010-01-01 | 45 nm 0.045 μm 4.5e-5 mm | |||||||||
Gen6 | 2010-09-13 | 32 nm 0.032 μm 3.2e-5 mm | |||||||||
Gen7 | 2011-05-04 | 22 nm 0.022 μm 2.2e-5 mm | |||||||||
Gen7.5 | 2013-06-04 | 22 nm 0.022 μm 2.2e-5 mm | |||||||||
Gen8 | 2014-10-01 | 14 nm 0.014 μm 1.4e-5 mm | |||||||||
Gen9 | 2015-08-05 | 14 nm 0.014 μm 1.4e-5 mm | |||||||||
Gen9.5 | 2016-08-30 | 14 nm 0.014 μm 1.4e-5 mm | |||||||||
Gen10 | 2018-01-01 | 10 nm 0.01 μm 1.0e-5 mm | |||||||||
Gen11 | 2018-01-01 | 10 nm 0.01 μm 1.0e-5 mm | |||||||||
Gen12 | 2020-01-01 | 10 nm 0.01 μm 1.0e-5 mm | |||||||||
Arctic Sound | 2020-01-01 | 10 nm 0.01 μm 1.0e-5 mm | |||||||||
Jupiter Sound | 2022-01-01 | 10 nm 0.01 μm 1.0e-5 mm |
Many-core[edit]
Initial effort & Polaris[edit]
Intel actual large effort research into the area of many-core started after the February 2004 Intel Developer Forum following Pradeep Dubey famous keynote titled "The Era of Tera." Around the 2004-2005 Intel formed a number of strategic research projects to explorer and study the feasibility and challenges of many-core and tera-scale processing. One of the earliest examples of such project was the Tera-scale Computing Research Program which was unveiled by Justin Rattner, then-CTO, at the spring 2006 Intel Develop Forum.
The first product to come directly from that project was Polaris, an 80-core chip designed using modular tiles that could scale in the x- and y- directions using a routing system that interconnected all the tiles in a mesh topology. Fabricated on a 65 nm process, the chip was around 275 mm² and incorporated around 100M transistors. The chip also attempted to solve some of the inherent problems dealing with a large amount of cores such as the bandwidth. 3D stacked SRAM was utilized to achieve bandwidths of over 1 Tb/s. Operating as high as 5.7 GHz, the chip could reach over 1.8 teraFLOPS of sustained performance.
Larrabee[edit]
This section is empty; you can help add the missing info by editing this page. |