From WikiChip
Difference between revisions of "amd/microarchitectures/zen"
< amd‎ | microarchitectures

(Added Dali Codename)
Line 94: Line 94:
 
|-
 
|-
 
| {{amd|Raven Ridge|l=core}} || Up to 4/8 || Mobile processors with {{\\|Vega}} GPU
 
| {{amd|Raven Ridge|l=core}} || Up to 4/8 || Mobile processors with {{\\|Vega}} GPU
 +
|-
 +
| {{amd|Dali|1=core}} || Up to 2/4 || Budget mobile processors with {{\\|Vega}} GPU
 
|-
 
|-
 
| {{amd|Snowy Owl|l=core}} || Up to 16/32 || Embedded edge processors
 
| {{amd|Snowy Owl|l=core}} || Up to 16/32 || Embedded edge processors

Revision as of 15:32, 25 August 2020

Edit Values
Zen µarch
General Info
Arch TypeCPU
DesignerAMD
ManufacturerGlobalFoundries
IntroductionMarch 2, 2017
Process14 nm
Core Configs4, 6, 8, 12, 16, 24, 32
Pipeline
TypeSuperscalar
OoOEYes
SpeculativeYes
Reg RenamingYes
Stages19
Decode4-way
Instructions
ISAx86-64
ExtensionsMOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, RDRND, F16C, BMI, BMI2, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVE, SHA, CLZERO
Cache
L1I Cache64 KiB/core
4-way set associative
L1D Cache32 KiB/core
8-way set associative
L2 Cache512 KiB/core
8-way set associative
L3 Cache2 MiB/core
16-way set associative
Cores
Core NamesNaples,
Whitehaven,
Summit Ridge,
Raven Ridge,
Snowy Owl,
Great Horned Owl,
Banded Kestrel
Succession

Zen (family 17h) is the microarchitecture developed by AMD as a successor to both Excavator and Puma. Zen is an entirely new design, built from the ground up for optimal balance of performance and power capable of covering the entire computing spectrum from fanless notebooks to high-performance desktop computers. Zen was officially launched on March 2, 2017. Zen was replaced by Zen+ in 2018.

For performance desktop and mobile computing, Zen is branded as Athlon, Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9 and Ryzen Threadripper processors. For servers, Zen is branded as EPYC.

Etymology

Zen Logo

Zen was picked by Michael Clark, AMD's senior fellow and lead architect. Zen was picked to represent the balance needed between the various competing aspects of a microprocessor - transistor allocation/die size, clock/frequency restriction, power limitations, and new instructions to implement.

Codenames

Core C/T Target
Naples Up to 32/64 High-end server multiprocessors
Whitehaven Up to 16/32 Enthusiasts market processors
Summit Ridge Up to 8/16 Mainstream to high-end desktops
Raven Ridge Up to 4/8 Mobile processors with Vega GPU
core Up to 2/4 Budget mobile processors with Vega GPU
Snowy Owl Up to 16/32 Embedded edge processors
Great Horned Owl Up to 4/8 Embedded processors with Vega GPU
Banded Kestrel Up to 2/4 Low-power/Cost-sensitive embedded processors with Vega GPU

Brands

Ryzen brand logo
AMD Zen-based processor brands
Logo Family General Description Differentiating Features
Cores Unlocked AVX2 SMT XFR IGP ECC MP
Mainstream
amd ryzen 3 logo.png Ryzen 3 Entry level Performance Quad ✔/✘
amd ryzen 5 logo.png Ryzen 5 Mid-range Performance Quad ✔/✘
Hexa
amd ryzen 7 logo.png Ryzen 7 High-end Performance Octa
amd ryzen 9 logo.png Ryzen 9 High-end Performance 12-16
Enthusiasts / Workstations
ryzen threadripper logo.png Ryzen Threadripper Enthusiasts 8-16
Servers
amd epyc logo.png EPYC High-performance Server Processor 8-32  
Embedded / Edge
epyc embedded logo.png EPYC Embedded Embedded / Edge Server Processor 8-16 ✔/✘  
ryzen embedded logo.png Ryzen Embedded Embedded APUs 4   ✔/✘  
  • Note: While a model has an unlocked multiplier, not all chipsets support overclocking. (see §Sockets)
  • Note: 'X' models will enjoy "Full XFR" providing an additional +100 MHz (200 for 1500X and Threadripper line) when sufficient thermo/electric requirements are met. Non-X models are limited to just +50 MHz.

Identification

Identification
Ryzen7  1700X 
Ryzen5  3550H 
       Power Segment
(none)Standard Desktop
UStandard Mobile
XHigh Performance, with XFR
WXHigh Core Count Workstation
GDesktop + IGP
ELow-power Desktop
GELow-power Desktop + IGP
MLow-power Mobile
HHigh-performance Mobile
SSlim Mobile
HSHigh-Performance Slim Mobile
XTExtreme
      Model Number
Speed bump and/or differentiator for high core count chips (8 cores+).
     Performance Level
9Extreme (Ryzen Threadripper & Ryzen 9)
8Highest (Ryzen 7)
6-7High (Ryzen 5 & 7)
4-5Mid (Ryzen 5)
1-3Low (Ryzen 3)
    Generation
1First generation Zen (2017)
2First generation Zen (2017) for Mobile APUs; First generation Zen with enhanced node (2018)
3First generation Zen with enhanced node(2018) for Mobile APUs; Second generation Zen (Zen2)(2019)
4Third generation Zen (Zen3)(2020)
   
  Market segment
3Low-end performance
5Mid-range performance
7Enthusiast / High-end performance
9High-end performance / Workstation
ThreadripperHigh-end performance / Workstation
 Brand Name
Ryzen

Release Dates

First 16-core HEDT market CPU

The first set of processors, as part of the Ryzen 7 family were introduced at an AMD event on February 22, 2017 before the Game Developer Conference (GDC). However initial models don't get shipped until March 2. Ryzen 5 hexa-core and quad-core variants were released on April 11, 2017. Server processors are set to be released in by the end of Q2, 2017. In October 2017, AMD launched mobile Zen-based processors featuring Vega GPUs.


amd zen ryzen rollout.png

Process Technology

See also: 14 nm process

Zen is manufactured on Global Foundries' 14 nm process Low Power Plus (14LPP). AMD's previous microarchitectures were based on 32 and 28 nanometer processes. The jump to 14 nm was part of AMD's attempt to remain competitive against Intel (Both Skylake and Kaby Lake are also manufactured on 14 nm). The move to 14 nm will bring along related benefits of a smaller node such as reduced heat, reduced power consumption, and higher density for identical designs.

Compatibility

Linux added initial support for Zen starting with Linux Kernel 4.10. Microsoft will only support Windows 10 for Zen.

Vendor OS Version Notes
Microsoft Windows Windows 7 No Support
Windows 8 No Support
Windows 10 Support
Linux Linux Kernel 4.10 Initial Support
Kernel 4.15 Full Support

Compiler support

With the release of Ryzen, AMD introduced their own compiler: AMD Optimizing C/C++ Compiler (AOCC). AOCC is an LLVM port especially modified to generate optimized x86 code for the Zen microarchitecture.

Compiler Arch-Specific Arch-Favorable
AOCC ‐march=znver1 -mtune=znver1
GCC -march=znver1 -mtune=znver1
LLVM -march=znver1 -mtune=znver1
Visual Studio /arch:AVX2  ?

CPUID

See also: AMD CPUIDs
Core Extended
Family
Family Extended
Model
Model
Naples, Whitehaven, Summit Ridge 0x8 0xF 0x0 0x1
Family 23 Model 1
Raven Ridge 0x8 0xF 0x1 0x1
Family 23 Model 17

Architecture

AMD Zen is an entirely new design from the ground up which introduces considerable amount of improvements and design changes over Excavator. Mainstream Zen-based microprocessors utilize AMD's Socket AM4 unified platform along with the Promontory chipset.

Key changes from Excavator

  • Zen was designed to succeed both Excavator (High-performance) and Puma (Low-power) covering the entire range in one architecture
    • Cover the entire spectrum from fanless notebooks to high-performance desktops
    • More aggressive clock gating with multi-level regions
    • Power focus from design, employs low-power design methodologies
      • >15% switching capacitance (CAC) improvement
  • Utilizes 14 nm process (from 28 nm)
  • 52% improvement in IPC per core for a single-thread (AMD Claim)
    • From Piledriver to Zen
    • Based on the industry-standardized SPECint_base2006 score compiled with GCC 4.6 -O2 at a fixed 3.4GHz
  • Up to 3.7× performance/watt improvment
  • Return to conventional high-performance x86 design
    • Traditional design for cores without shared blocks (e.g. shared SIMD units)
    • Large beefier core design
  • Core engine
    • Simultaneous Multithreading (SMT) support, 2 threads/core (see § Simultaneous MultiThreading for details)
    • Branch Predictor
      • Improved branch mispredictions
        • Better branch predicitons with 2 branches per BTB entry
        • Lower miss latency penalty
      • BP is now decoupled from fetch stage
    • Large μop cache (2K instructions)
    • Wider μop dispatch (6, up from 4)
    • Larger instruction scheduler
      • Integer (84, up from 48)
      • Floating Point (96, up from 60)
    • Larger retire throughput (8, up from 4)
    • Larger Retire Queue (192, up from 128)
      • duplicated for each thread
    • Larger Load Queue (72, up from 44)
    • Larger Store Queue (44, up from 32)
      • duplicated for each thread
    • Quad-issue FPU (up from 3-issue)
    • Faster Load to FPU (down to 7, from 9 cycles)
  • Cache system
    • L1
      • 64 KiB (double from previous capacity of 32 KiB)
      • Write-back L1 cache eviction policy (From write-through)
      • 2× the bandwidth
    • L2
      • 2× the bandwidth
      • Faster L2 cache
    • Faster L3 cache
    • Better L1$ and L2$ data prefetcher
    • 5× L3 bandwidth
    • Move elimination block added
    • Page Table Entry (PTE) Coalescing

New instructions

Zen introduced a number of new x86 instructions:

  • ADX - Multi-Precision Add-Carry Instruction extension
  • RDSEED - Hardware-based RNG
  • SMAP - Supervisor Mode Access Prevention
  • SHA - SHA extensions
  • CLFLUSHOPT - Flush Cache Line
  • XSAVE - Privileged Save/Restore
  • CLZERO - Zero-out Cache Line (AMD exclusive)

While not new, Zen also supports AVX, AVX2, FMA3, BMI1, BMI2, AES, RdRand, SMEP. Note that with Zen, AMD dropped support for XOP, TBM, and LWP.

Note: WikiChip's testing shows FMA4 still works despite not being officially supported and not even reported by CPUID. This has also been confirmed by Agner here. Those tests were not exhaustive. Never use them in production.

Block Diagram

Client Configuration

Entire SoC Overview

zen soc block.svg

Individual Core

zen block diagram.svg

Single/Multi-chip Packages

Single-die

Single-die as used in Summit Ridge:

AMD Summit Ridge SoC.svg
2-die MCP

2-die MCP used for Threadripper:

AMD Threadripper SoC.svg
4-die MCP

4-die MCP used for EPYC:

AMD Naples SoC.svg
4-die CCX configs
32-core configuration:
zen soc block (32 cores).svg
24-core configuration:
zen soc block (24 cores).svg
16-core configuration:
zen soc block (16 cores).svg
8-core configuration:
zen soc block (8 cores).svg

Memory Hierarchy

  • Cache
    • L0 µOP cache:
      • 2,048 µOPs, 8-way set associative
        • 32-sets, 8-µOP line size
      • Parity protected
    • L1I Cache:
      • 64 KiB 4-way set associative
        • 256-sets, 64 B line size
        • Shared by the two threads, per core
      • Parity protected
    • L1D Cache:
      • 32 KiB 8-way set associative
        • 64-sets, 64 B line size
        • Write-back policy
      • 4-5 cycles latency for Int
      • 7-8 cycles latency for FP
      • SEC-DED ECC
    • L2 Cache:
      • 512 KiB 8-way set associative
      • 1,024-sets, 64 B line size
      • Write-back policy
      • Inclusive of L1
      • Latency:
        • 17 cycles latency (ONLY Summit Ridge)
        • 12 cycles latency (All others)
      • DEC-TED ECC
    • L3 Cache:
      • Victim cache
      • Summit Ridge, Naples: 8 MiB/CCX, shared across all cores.
      • Raven Ridge: 4 MiB/CCX, shared across all cores.
      • 16-way set associative
        • 8,192-sets, 64 B line size
      • 40 cycles latency
      • DEC-TED ECC
    • System DRAM:
      • 2 channels per die
      • Summit Ridge: up to PC4-21300U (DDR4-2666 UDIMM), ECC supported
      • Raven Ridge: up to PC4-23466U (DDR4-2933 UDIMM), ECC supported by PRO models
      • Naples: up to PC4-21300L (DDR4-2666 RDIMM/LRDIMM), ECC supported
      • ECC: x4 DRAM device failure correction (Chipkill), x8 SEC-DED ECC, Patrol and Demand scrubbing, Data poisoning

Zen TLB consists of dedicated level one TLB for instruction cache and another one for data cache.

  • TLBs
    • ITLB
      • 8 entry L0 TLB, all page sizes
      • 64 entry L1 TLB, all page sizes
      • 512 entry L2 TLB, no 1G pages
      • Parity protected
    • DTLB
      • 64 entry L1 TLB, all page sizes
      • 1,532-entry L2 TLB, no 1G pages
      • Parity protected

Core

Pipeline

amd zen hc28 page 0004.jpg

Zen presents a major design departure from the previous couple of microarchitectures. In the pursuit of remaining competitive against Intel, AMD went with a similar approach to Intel's: large beefier core with SoC design that can scale from extremely low TDP (fanless devices) to supercomputers utilizing dozens of cores. As such, Zen is aimed at replacing both Excavator (AMD's previous performance microarchitecture) and Puma (AMD's previous ultra-low power arch). In addition to covering the entire computing spectrum through power efficiency and core scalability, another major design goal was 40% uplift in single-thread performance (i.e. 40% IPC increase) from Excavator. The large increase in performance is the result of major redesigns in all four areas of the core (the front end, the execution engine, and the memory subsystem) as well as Zen's new SoC CCX (CPU Complex) modular design. The core itself is wider and all around bigger (roughly every component had its capacity substantially increased). The improvement in power efficiency is the result of the 14 nm process used as well as many low-power design methodologies that were utilized early on in the design process (Excavator has been manufactured on GF's 28 nm process). AMD introduced various components (such as their new prediction flow and forwarding mechanisms) that eliminate the need for operations to go through the high power ALUs and decoders, increasing the overall power efficiency and throughput.

Broad Overview

While Zen is an entirely new design, AMD continued to maintain their traditional design philosophy which shows throughout their design choice such as a split scheduler and split FP and int&memory execution units. At a very broad view, Zen shares many similarities with its predecessor but introduces new elements and major changes. Each core is composed of a front end (in-order area) that fetches instructions, decodes them, generates µOPs and fused µOPs, and sends them to the Execution Engine (out-of-order section). Instructions are either fetched from the L1I$ or come from the µOPs cache (on subsequent fetches) eliminating the decoding stage altogether. Zen decodes 4 instructions/cycle into the µOP Queue. The µOP Queue dispatches separate µOPs to the Integer side and the FP side (dispatching to both at the same time when possible).

amd zen hc28 overview.png

The biggest departure from previous generation is Zen's return to traditional core partitioning - every core is an independent core with its own floating-point/SIMD units and a L2 cache. Previously, those units were shared between two cores; they are now once again completely private.

Unlike many of Intel's recent microarchitectures (such as Skylake and Kaby Lake) which make use of a unified scheduler, AMD continue to use a split pipeline design. µOP are decoupled at the µOP Queue and are sent through the two distinct pipelines to either the Integer side or the FP side. The two sections are completely separate, each featuring separate schedulers, queues, and execution units. The Integer side splits up the µOPs via a set of individual schedulers that feed the various ALU units. On the floating point side, there is a different scheduler to handle the 128-bit FP operations. Zen support all modern x86 extensions including AVX/AVX2, BMI1/BMI2, and AES. Zen also supports SHA, secure hash implementation instructions that are currently only found in Intel's ultra-low power microarchitectures (e.g. Goldmont) but not in their mainstream processors.

From the memory subsystem point of view, data is fed into the execution units from the L1D$ via the load and store queue (both of which were almost doubled in capacity) via the two Address Generation Units (AGUs) at the rate of 2 loads and 1 store per cycle. Each core also has a 512 KiB level 2 cache. L2 feeds both the the level 1 data and level 1 instruction caches at 32B per cycle (32B can be sent in either direction (bidirectional bus) each cycle). L2 is connected to the L3 cache which is shared across all cores. As with the L1 to L2 transfers, the L2 also transfers data to the L3 and vice versa at 32B per cycle (32B in either direction each cycle).

Front End

amd zen hc28 fetch.png

The Front End of the Zen core deals with the in-order operations such as instruction fetch and instruction decode. The instruction fetch is composed of two paths: a traditional decode path where instructions come from the instruction cache and a µOPs cache that are determined by the branch prediction (BP) unit. The instruction stream and the branch prediction unit track instructions in 64B windows. Zen is AMD's first design to feature a µOPs cache, a unit that not only improves performance, but also saves power (the µOPs cache was first introduced by Intel in their Sandy Bridge microarchitecture).

The branch prediction unit is decoupled and can start working as soon as it receives a desired operation such as a redirect, ahead of traditional instruction fetches. AMD still uses a hashed perceptron system similar to the one used in Jaguar and Bobcat, albeit likely much more finely tuned. AMD stated it's also larger than previous architectures but did not disclose actual sizes. Once the BP detects an indirect target operation, the branch is moved to the Indirect Target Array (ITA) which is 512 entry deep. The BP includes a 32-entry return stack.

In Zen, AMD moved the instruction TLB to BP (to much earlier in the pipeline than in previous architectures). This was done to allow for more-aggressive prefetching by allowing the physical address to be retrieved at an earlier stage. The BP is capable of storing 2 branches per BTB (Branch Target Buffer) entry, reducing the number of BTB reads necessary. ITLB is composed of:

  • 8-entry L0 TLB, all page sizes
  • 64-entry L1 TLB, all page sizes
  • 512-entry L2 TLB, no 1G pages
Fetching

Instructions are fetched from the L2 cache at the rate of 32B/cycle. Zen features an asymmetric level 1 cache with a 64 KiB instruction cache, double the size of the L1 data cache. Depending on the branch prediction decision instructions may be fetched from the instruction cache or from the µOPs cache in which eliminates the need for performing the costly instruction decoding.

amd zen hc28 decode.png

On the traditional side of decode, instructions are fetched from the L1$ at 32B aligned bytes per cycle and go to the instruction byte buffer and through the pick stage to the decode. Actual tests show the effective throughput is generally much lower (around 16-20 bytes). This is slightly higher than the fetch window in Intel's Skylake which has a 16-byte fetch window. The size of the instruction byte buffer was not given by AMD but it's expected to be larger than the 16-entry structure found in their previous architecture.

µOP cache & x86 tax

Decoding is the biggest weakness of x86, with decoders being one of the most expensive and complicated aspect of the entire microarchitecture. Instructions can vary from a single byte up to fifteen. Determining instruction boundaries is a complex task in itself. The best way to avoid the x86 decoding tax is to not decode instructions at all. Ideally, most instructions get a hit from the BP and acquire a µOP tag, sending them directly to be retrieved from the µOP cache which are then sent to the µOP Queue. This bypasses most of the expensive fetching and decoding that would otherwise be needed to be done. This caching mechanism is also a considerable power saving feature.

The µOP cache used in Zen is not a trace cache and much closely resembles the one used by Intel in their microarchitectures since Sandy Bridge. The µOP cache is an independent unit not part of the L1I$ and is not a necessarily a subset of the L1I cache either; I.e., there are instances where there could be a hit in the µOP cache but a miss in the L1$. This happens when an instruction that got stored in the µOP cache gets evicted from L1. During the fetch stage probing must be done from both paths. Zen has a specific unit called 'Micro-Tags' which does the probing and determines whether the instruction should be accessed from the µOP cache or from the L1I$. The µOP cache itself has a dedicated $tags for accessing those µOPs.

Decode
amd fastpath single-double (zen).svg

Having to execute x86, there are instructions that actually include multiple operations. Some of those operations cannot be realized efficiently in an OoOE design and therefore must be converted into simpler operations. In the front-end, complex x86 instructions are broken down into simpler fixed-length operations called macro-operations or MOPs (sometimes also called complex OPs or COPs). Those are often mistaken for being "RISCish" in nature but they retain their CISC characteristics. MOPS can perform both an arithmetic operation and memory operation (e.g. you can read, modify, and write in a single MOP). MOPs can be further cracked into smaller simpler single fixed length operation called micro-operations (µOPs). µOPs are a fixed length operation that performs just a single operation (i.e., only a single load, store, or an arithmetic). Traditionally AMD used to distinguish between the two ops, however with Zen AMD simply refers to everything as µOPs although internally they are still two separate concepts.

Decoding is done by the 4 Zen decoders. The decode stage allows for four x86 instructions to be decoded per cycle which are in turn sent to the µOP Queue. Previously, in the Bulldozer/Jaguar-based designs AMD had two paths: a FastPath Single which emitted a single MOP and a FastPath Double which emitted two MOPs which are in turn sent down the pipe to the schedulers. Michael Clark (Zen's lead architect) noted that Zen has significantly denser MOPs meaning almost all instructions will be a FastPath Single (i.e., one to one transformations). What would normally get broken down into two MOPs in Bulldozer is now translated into a single dense MOP. It's for those reasons that while up to 8MOPs/cycle can be emitted, usually only 4MOPs/cycle are emitted from the decoders.

Dispatch is capable of sending up to 6 µOP to Integer EX and an up to 4 µOP to the Floating Point (FP) EX. Zen can dispatch to both at the same time (i.e. for a maximum of 10 µOP per cycle), however, since the retire control unit (RCU) can only handle up to 6 MOPs/cycle, the effective number of dispatched µOPs is likely lower.

MSROM

A third path that may occasionally be reached is the Microcode Sequencer (MS) ROM. Instructions that end up emitting more than two macro-ops will be redirected to microcode ROM. When this happens the OP Queue is stalled (possibly along with the decoders) and the MSROM gets to emit its MOPs.

Optimizations

A number of optimization opportunities are exploited at this stage.

Stack Engine

At the decode stage Zen incorporates the the Stack Engine Memfile (SEM). Note that while AMD refers to SEM as a new unit, they have had a Stack Engine in their designs since K10. The Memfile sits between the queue and dispatch monitoring the MOP traffic. The Memfile is capable of performing store-to-load forwarding right at dispatch for loads that trail behind known stores with physical addresses. Other things such as eliminating stack PUSH/POP operations are also done at this stage so they are effectively a zero-latency instructions; proceeding instructions that rely on the stack pointer are not delayed. This is a fairly effective low-power solution that off-loads some of the work that would otherwise be done by AGU.

µOP-Fusion

At this stage of the pipeline, Zen performs additional optimizations such as micro-op fusion or branch fusion - an operation where a comparison and branch op gets combined into a single µOP (resulting in a single schedule+single execute). An almost identical optimization is also performed by Intel's competing microarchitectures. In Zen, CMP or TEST (no other ALU instructions qualify) immediately followed by a conditional jump can be fused into a single µOP. Note that non-RIP-relative memory will not be fused. Up to two fused branch µOPs can be executed each cycle when not taken. When taken, only single fused branch µOPs can be executed each cycle.

It's interesting to reiterate the fact that the branch fusion is actually done by the dispatch stage instead of decode. This is a bit unusual because you'd normally perform that operation in decode in order to reduce the number of internal instructions. In Zen, the decoders can still end up emitting two ops just to be fused together in the dispatch stage. This change can likely be attributed to the various optimizations that came along with the introduction of the µOPs cache (which sits parallel to the decoders in the pipeline). It also implies that the decoders are of a simple design intended to be further translated later own in the pipe thereby being limited to a number of key transformations such as instruction boundary detection (i.e., x86 instruction length and rearrangement).

Execution Engine

amd zen hc28 integer.png

As mentioned early, Zen returns to a fully partitioned core design with a private L2 cache and private FP/SIMD units. Previously those units shared resources spanning two cores. Zen's Execution Engine (Back-End) is split into two major sections: integer & memory operations and floating point operations. The two sections are decoupled with independent renaming, schedulers, queues, and execution units. Both Integer and FP sections have access to the Retire Queue which is 192 entries and can retire 8 instructions per cycle (independent of either Integer or FP). The wider-than-dispatch retire allows Zen to catch up and free the resources much quicker (previous architectures saw bottleneck at this point in situations where an older op is stalling causing a reduction in performance due to retire needing to catch up to the front of the machine).

Because the two regions are entirely divided, a penalty of one cycle latency will incur for operands that crosses boundaries; for example, if an operand of an integer arithmetic µOP depends on the result of a floating point µOP operation. This applies both ways. This is a similar to the inter-Common Data Bus exchanges in Intel's designs (e.g., Skylake) which incur a delay of 1 to 2 cycles when dependent operands cross domains.

Move elimination

Move elimination is possible in both Integer and FP domains; register moves are done internally by modifying the register mapping rather than through an execution of a µOP. No execution unit resources is used in the process and such µOP result in zero latency. In WikiChip's tests, almost all move eliminations succeed; including chained moves. An elimination will never occur for moves involving the register itself. This applies to both 32-bit and 64-bit integer registers as well as all 128-bit and 256-bit vector registers but not half registers (e.g. 16/8 bit registers).

Integer

The Integer Execute can receive up to 6 µOPs/cycle from Dispatch where it is mapped from logical registers to physical registers. Zen has a 168-entry physical 64-bit integer register file, an identical size to that of Broadwell. Instead of a large scheduler, Zen has 6 distributed scheduling queues, each 14 entries deep (4xALU, 2xAGU). Zen includes a number of enhancements such as differential checkpoints tracking branch instructions and eliminating redundant values as well as move eliminations. Note that register moves are done internally by modifying the register mapping rather than through an execution of a µOP. While AMD stated that the ALUs are largely symmetric except for a number of exceptions, it's still unknown which operations are reserved to which units.

Generally, the four ALUs will execute four integer instructions per cycle. Simple operations can be done by any of the ALUs whereas the more expensive multiplication and division ones can only be done by their respective ALUs (there is one of each). Additionally, two of Zen's ALUs are capable of performing a branch, therefore Zen can peak at 2 branches per cycle. This only occurs if they are not taken. The two branches can simultaneously execute two branch instructions from the same thread or from two separate threads. If the branch is taken, Zen is restricted to only 1 branch per cycle. This is a similar restriction which is found in Intel's architectures such as Haswell. In Haswell, port 0 can only execute predicted "not-taken" branches whereas port 6 can perform both "taken" and "not taken". AMD's reason for adding a second branch is driven by an entirely different reason compared to Haswell which had done the same. The second branch unit in Haswell was added largely in an effort to mitigate port contention. Prior to that change, code involving tight loops that performed SSE operations ended up fighting over the same port as both the SSE operation and the actual branch ended up being scheduled on the same port. Zen doesn't actually have this issue. The addition of a second branch unit in their case serves to purely boost the performance of branch-heavy code.

The 2 AGUs can be used in conjunction with the ALUs. µOPs involving a memory operands will make use of both at the same time and will not be (i.e., the operations don't get split up). Zen is capable of a read+write or read+read operations in one cycle (See § Memory Subsystem).

Floating Point

The Floating Point side can receive up to 4 µOPs/cycle from Dispatch where it is mapped from logical registers to physical registers. Zen has a 160-entry physical 128-bit floating point register file, just 8 entries shy of the size used in Intel's Skylake/Kaby Lake architectures. The register file can perform direct transfers to the Integer register files as needed.

amd zen hc28 fp.png

Before ops go to the scheduling queue, they go through the Non-Scheduling Queue (NSQ) first which is essentially a wait buffer. Because FP instructions typically have higher latency, they can create a back-up at Dispatch. The non-scheduling queue attempts to reduce this by queuing more FP instructions which lets Dispatch continue on as much as possible on the Integer side. Additionally, the NSQ can go ahead and start working on the memory components of the FP instructions so that they can be ready once they go through the Scheduling Queue. From the schedulers, the instructions are sent to be executed. The FP scheduler has four pipes (1 more than that of Excavator) with execution units that operate on 128-bit floating point.

The FP deals with all vector operations. The simple integer vector operations (e.g. shift, add) can all be done in one cycle, half the latency of AMD's previous architecture. Basic floating point math has a latency of three cycles including multiplication (one additional cycle for double precision). Fused multiply-add are five cycles.

The FP has a single pipe for 128-bit load operations. In fact, the entire FP side is optimized for 128-bit operations. Zen supports all the latest instructions such as SSE and AVX1/2. The way 256-bit AVX was designed was so that they can be carried out as two independent 128-bit operations. Zen takes advantage of that by operating on those instructions as two operations; i.e., Zen splits up 256-bit operations into two µOPs so they are effectively half the throughput of their 128-bit operations counterparts. Likewise, stores are also done on 128-bit chunks, making 256-bit loads have an effective throughput of one store every two cycles. The pipes are fairly well balanced, therefore most operations will have at least two pipes to be scheduled on retaining the throughput of at least one such instruction each cycle. As implies, 256-bit operations will use up twice the resources to complete (i.e., 2x register, scheduler, and ports). This is a compromise AMD has taken which helps conserve die space and power. By contrast, Intel's competing design, Skylake, does have dedicated 256-bit circuitry. It's also worth noting that Intel's contemporary server class models have extended this further to incorporate dedicated 512-bit circuitry supporting AVX-512 with the highest performance models having a whole second dedicated AVX-512 unit.

Additionally Zen also supports SHA and AES with 2 AES units implemented in an attempt to improve encryption performance. Those units can be found on pipes 0 and 1 of the floating point scheduler.

Memory Subsystem

amd zen hc28 memory.png

Loads and Stores are conducted via the two AGUs which can operate simultaneously. Zen has a 44-entry Load Queue and a 44-entry Store Queue. Taking the two 14-entry deep AGU schedulers into account, the processor can keep up to 72 out-of-order loads in flight (same as Intel's Skylake). Zen employs a split TLB-data pipe design which allows TLB tag access to take place while the data cache is being fed in order to determine if the data is available and send their address to the L2 to start prefetching early on. Zen is capable of up to two loads per cycle (2x16B each) and up to one store per cycle (1x16B). The L1 TLB is 64-entry for all page sizes and the L2 TLB is a 1536-entry with no 1 GiB pages.

Zen incorporates a 64 KiB 4-way set associative L1 instruction cache and a 32 KiB 8-way set associative L1 data cache. Both the instruction cache and the data cache can fetch from the L2 cache at 32 Bytes per cycle. The L2 cache is a 512 KiB 8-way set associative unified cache, inclusive, and private to the core. The L2 cache can fetch and write 32B/cycle into the 8MB L3 cache (32B in either direction each cycle, i.e. bidirectional bus).

Infinity Fabric

Main article: AMD's Infinity Fabric

The Infinity Fabric (IF) is a system of transmissions and controls that underpin the entire Zen microarchitecture, any graphics microarchitecture (e.g Vega), and any other additional accelerators they might add in the future. Consisting of two separate fabrics, one for control signals and a second for data transmission, the infinity fabric is the primary means by which data flows from one core to the other, across CCXs, chips, to any graphics unit, and from any I/O (e.g. USB).

Clock domains

Zen is divided into a number of clock domains, each operating at a certain frequency:

  • UClk - UMC Clock - The frequency at which the Unified Memory Controller's (UMC) operates at. This frequency is identical to MemClk.
  • LClk - Link Clock - The clock at which the I/O Hub Controller communicates with the chip.
  • FClk - Fabric Clock - The clock at which the data fabric operates at. This frequency is identical to MemClk.
  • MemClk - Memory Clock - Internal and external memory clock.
  • CClk - Core Clock - The frequency at which the CPU core and the caches operate at (i.e. advertised frequency).

For example, a stock Ryzen 7 1700 with 2400 MT/s DRAM will have a CClk = 3000 MHz, MemClk = FClk = UClk = 1200 MHz.


zen soc clock domain.svg

Security

amd sme.png

AMD incorporated a number of new security technologies into their server-class Zen processors (e.g., EPYC). The various security features are offered via a new dedicated security subsystem which integrates an Cortex-A5 core. The dedicated secure processor runs a secured kernel with the firmware which sits externally (e.g., on an SPI ROM). The secure processor is responsible for the cryptographic functionalities for the secure key generation and management as well as hardware-validated boots.

SMESEV
Protection PerWhole MachineIndividual VMs
Type of ProtectionPhysical Memory AttackPhysical Memory Attack
Vulnerable VM
Encryption PerNative page tableGuest page table
Key ManagementKey/MachineKey/VM
Requires DriverNoYes


Secure Memory Encryption (SME)

Main article: Secure Memory Encryption

Secure Memory Encryption (SME) is a new feature which offers full hardware memory encryption against physical memory attacks. A single key is used for the encryption. An AES-128 Encryption engine sits on the integrated memory controller thereby offering real-time per page table entry encryption - this works across execution cores, network, storage, graphics, and any other I/O access that goes through the DMA. SME incurs additional latency tax only for encrypted pages.

AMD also supports Transparent SME (TSME) on their workstation-class PRO (Performance, Reliability, Opportunity) processors in addition to the server models. TSME is subset of SME limited to base encryption without OS/HV involvement, allowing for legacy OS/HV software support. In this mode, all memory is encrypted regardless of the value of the C-bit on any particular page. When this mode is enabled, SME and SEV are not available.

Secure Encrypted Virtualization (SEV)

Main article: Secure Encrypted Virtualization
amd sev.png

Secure Encrypted Virtualization (SEV) is a more specialized version of SME whereby individual keys can be used per hypervisor and per VM, a cluster of VMs, or a container. This allows the hypervisor memory to be encrypted and cryptographically isolated from the guest machines. Additionally SEV can work alongside unencrypted VMs from the same hypervisor. All this functionality is integrated and works with existing AMD-V technology.


amd sev architecture.png

Power

zen ccx voltage.png

  • RDL - Redistribution layer
  • LDOs - Regulate RVDD to create VDD per core
  • RVDD - Ungated supply
  • VDD - Gated core supply
  • VDDM - L2/L3 SRAM supply

Zen presented AMD with a number of new challenges in the area of power largely due to their decision to cover the entire spectrum of systems from ultra-low power to high performance. Previously AMD handled this by designing two independent architectures (i.e., Excavator and Puma). In Zen, SoC voltage coming from the Voltage Regulator Module (VRM) is fed to the RVDD, a package metal plane that distributes the highest VID request from all cores. In Zen, each core has a digital LDO regulator (low-dropout) and a digital frequency synthesizer (DFS) to vary frequency and voltage across power states on individual core basis. The LDO regulates RVDD for each power domain and create an optimal VDD per core using a system of sensors they've embedded across the entire chip; this is in addition to other properties such as countermeasures against droop. This is in contrast to some alternative solutions by Intel which attempted to integrated the voltage regulator (FIVR) on die in Haswell (and consequently removing it in Skylake due to a number of thermal restrictions it created). Zen's new voltage control is an attempt at a much finer power tuning on a per core level based on a collection of information it has on that core and overall chip.

amd zen package metal plane.png amd zen per core voltage distribution.png


AMD uses a Metal-Insulator-Metal Capacitor (MIMCap) layer between the two upper level metal layers for fast current injection in order to mitigate voltage droop. AMD stated that it covers roughly 45% of the core and a slightly smaller coverage of the L3. In addition to the LDO circuit integrated for each core is a low-latency power supply droop detector that can trigger the digital LDOs to turn on more drivers to counter droops.


amd zen mimcap.png

A larger number of sensors across the entire die are used to measure many of the CPU states including frequency, voltage, power, and temperature. The data is in turn used for workload characterization, adaptive voltage, frequency tuning, and dynamic clocking. Adaptive voltage and frequency scaling (AVFS), an on-die closed-loop system that adjusts the voltage in real time following real-time measurements based on sensory data collected. This is part of AMD's "Precision Boost" technology offering high granularity of 25 MHz clock increments.

Zen implements over 1300 sensors to monitor the state of the die over all critical paths including the CCX and external components such as the memory fabric. Additionally the CCX also incorporates 48 high-speed power supply monitors, 20 thermal diodes, and 9 high-speed droop detectors.

zen pure power sensory.png

System Management Unit

New text document.svg This section is empty; you can help add the missing info by editing this page.

Features

AMD introduced a series of new features in their new Zen microarchitecture:

Simultaneous MultiThreading (SMT)

Perhaps the single biggest enhancement to Zen is the addition of full-fledged simultaneous multithreading (SMT) support (a technology similar to Hyper-Threading found in Intel processors). This is a departure from AMD's previous lightweight (and largely ineffective and to some degree misleading) Clustered Multithreading (CMT). Zen is a properly simultaneous multi-threaded machine capable of handling two threads of execution throughout the entire machine. Below is a breakdown of how the various core components work under SMT:

amd zen hc28 smt.png
  •          - Competitively shared structures
  •          - Competitively shared and SMT tagged
  •          - Competitively shared with Algorithmic Priority
  •          - Statically Partitioned

The basics behind SMT are always the same: high utilization of resources through multiple threads of execution. When a single thread is running all structures become fully available to that thread as needed. With the introduction of SMT and a second thread, Zen attempts to share as much of the resources as possible in an attempt to balance out the throughput and deliver the appropriate structures to each thread as the software requires. The various structures can dynamically shift their resources depending on the kind of workload being executed. Structures that are competitively shared by the two threads (shaded in red in the diagram) include the execution units, schedulers, register file, the decode, and cache (including the µOP cache). The load queue, ITLB, and DTLB (shaded in dark cyan) are also competitively shared but require SMT tagging - resources (i.e. entries capacity) are shared between the threads but actual entry values (e.g. addresses) can only be accessed by the owning thread.

The branch predictor and the two register renaming/allocation units (shaded in blue) are competitively shared with algorithmic priority. Zen provides additional logic to give a certain thread temporary priority in resource allocation over the other thread. One such occasion is when the BP encounters a flush on one of the threads. Temporary priority is given to that thread in order to help it fetch much instructions as it could so it can get going again. Additionally, similar logic can be found at dispatch to ensure good throughput by both threads and high utilization of the execution units.

The µOP Queue, Retire Queue, and Store Queue (shaded in green on the diagram) are statically partitioned, i.e. those units have duplicate logic to handle each thread independently. Those were duplicated instead of shared simply due to the high complexity involved in doing so.

SenseMI Technology

SenseMI Technology (pronounced Sense-Em-Eye) is an umbrella term for a number of features AMD added to Zen microprocessors designed to increase performance through various self-tuning using a network of sensors:

10682-icon-neural-net-prediction-140x140.png

Neural Net Prediction - This appears to be largely marketing term for Zen's much beefier and more finely tuned branch prediction unit. Zen uses a hashed perceptron system to intelligently anticipate future code flows, allowing warming up of cold blocks in order to avoid possible waits. Most of that functionality is already found on every modern high-end microprocessor (including AMD's own previous microarchitectures). Because AMD has not disclosed any more specific information about BP, it can only be speculated that no new groundbreaking logic was introduced in Zen.

10682-icon-smart-prefetch-140x140.png

Smart Prefetch - As with the Prediction Unit, this too appears to be a marketing term for the number of changes AMD introduced in the fetch stage where the the branch predictor can get a hit on the next µOP and retrieve it via the µOPs cache directly to the µOPs Queue, eliminating the costly decode pipeline stages. Additionally Zen can detect various data patterns in the program's execution and predict future data requests allowing for prefetching ahead of time reducing latency.

10682-icon-pure-power-140x140.png
zen pure power loop.png

Pure Power - A feature in Zen that allows for dynamic voltage and frequency scaling (DVFS), similar to AMD's PowerTune technology or Cool'n'Quiet, along with a number of other enhancements that extends beyond the core to the Infinity Fabric (AMD's new proprietary interconnect). Pure Power monitors the state of the processor (e.g., workload), which in terms allows it to downclock when not under load in order to save power. Zen incorporates a network of sensors across the entire chip to help aid Pure Power in its monitoring.

10682-icon-precision-boost-140x140.png

Precision Boost - A feature that provides the ability to adjust the frequency of the processor on-the-fly given sufficient headroom (e.g. thermal limits based on the sensory data collected by a network of sensors across the chip), i.e. "Turbo Frequency". Precision Boost adjusts in 25 MHz increments. With Zen-based APUs, AMD introduced Precision Boost 2 - an enhancement of the original PB feature that uses a new algorithm that controls the boost frequency on a per-thread basis depending on the headroom.

amd zen xfr.jpg
10682-icon-frequency-range-140x140.png

Extended Frequency Range (XFR) - This is a fully automated solution that attempts to allow higher upper limit on the maximum frequency based on the cooling technique used (e.g. air, water, LN2). Whenever the chip senses that it's suitable enough for a given frequency, it will attempt to increase that limit further. XFR is partially enabled on all models, providing an extra +50 MHz frequency boost whenever possible. For 'X' models, full XFR is enabled providing twice the headroom of up to +100 MHz. With Zen-based APUs, AMD introduced Mobile XFR (mXFR) which offers mobile devices with premium cooling a sustainable higher boost frequency for a longer period of time.

The AMD presentation slide on the right depicts a normal use case for the Ryzen 7 1800X. When under normal workload, the processor will operate at around its base frequency of 3.6 GHz. When experiencing heavier workload, Precision Boost will kick in increment it as necessary up to its maximum frequency of 4 GHz. With adequate cooling, XFR will bump it up an additional 100 MHz. This boost is sustainable for the first two active cores, at which point the boost frequency will drop to the "all core" frequency. When light workload get experienced, the processor will reduce its frequency. As Pure Power senses the workload and CPU state, it can also drastically downclock the CPU when appropriate (such as in the graph during mostly idle scenarios).

ryzen-xfr-1800x example.jpg

Scalability

CPU Complex (CCX)

naples without heatspread.jpg

AMD organized Zen in groups of cores called a CPU Complex (CCX). Each CCX consists of four cores connected to an L3 cache. The L3 cache is an 8 MiB 16-way set associative victim cache and is mostly exclusive of the L2. The L3 cache is made of four slices (providing 2 MiB L3 slice/core) organized by low-order address interleaved. Every core can access every L3 cache slice with the same average latency. When a certain core starts working on a chunk of memory it will fill up the L2 and as it continue to execute and fetch new data any spillover will find its way in the L3.

Depending on the exact processor processor model, there may be one or more CCXs joined together. For example, all mainstream Ryzen 3/5/7 models have two CCXs with up to 8 cores (and an equal amount of cores disabled on each CCX as the chips are down-binned to 4/6 cores). It's important to note that the L3 in Zen is not a true last level cache (LLC) as the 16 MiB L3$ will consist of two separate 8 MiB and not one unified L3. The separate CPU complexes can communicate with each other via the Infinity Fabric which connects the CCXs along with the memory controller and I/O. While the CCXs operate at core frequency (CClk), the fabric itself operates at MemClk (see § Clock domains). This design choice allows for the scaling up to large high-performance multi-core system (i.e., high scalability, particularly in the server segment, through high core count and large bandwidth) but it does mean that systems making use of Zen processors have to treat every CPU Complex as a processor of its own - i.e., schedule tasks using cache-coherent non-uniform memory access (ccNUMA-aware) scheduling. This is important to ensure that threads are not moved from one CCX to the other as doing so will likely incur unnecessary performance penalties (as cache data would need to be communicated over via the fabric from one CCX to the next which has additional overhead latency and lower bandwidth).

While specific worst-case scenario performance tests have shown that rapid inter-CCXs data movement incur a substantial performance penalty, real world tests have shown the penalty is rather small in practice as the operating system (e.g. Windows) knows how to do the right thing. Additionally performance can be improved with faster memory kits which in turn increases the frequency of the fabric as well (see § Clock domains).


zen ccx.svg
amd zen ccx.png

Multiprocessors

See also: Naples Core and AMD EPYC
amd naples chip.jpg

As part of the Zen microarchitecture, AMD also developed a series of dual-socket multiprocessors. The new server processors are branded under a new family called EPYC which effectively succeeds the older Opteron family. All EPYC processors consist of four Zeppelin dies stitched together. Since each Zeppelins is a complete system on chip with the northbridge and southbridge integrated on-die, the combination of four of them allows AMD to offer a sufficient amount of I/O signals that a chipset can be entirely eliminated. Communication between the individual dies is done via AMD's Infinity Fabrics protocols over a set of GMI (Global Memory Interconnect).

Each Zeppelin provides 32 Gen 3.0 PCIe lanes for a total of 128 lanes. In a single-socket configuration, all 128 lanes may be used for general purpose I/O - for example 6 GPUs over x16 and x8 more lanes for additional storage. This is considerably more than any comparable contemporary Intel model (either Broadwell EP or Skylake SP). Naples-based processors scale all the way up to 32 cores with 64 threads (for up to 64 cores and 128 threads per complete system). The caveat is that when in 2-way MP mode, half of the lanes are lost. 64 of the 128 of the PCIe lanes get allocated for interchip communication via AMD's Infinity Fabrics protocols with the remaining 64 lanes left for the system. 64 PCIe lanes for socket-to-socket communication provides a maximum bandiwdth of This setup still leaves the system with 128 PCIe lanes, but it's not any more than in a single-socket configuration.

In addition to PCIe lanes, each Zeppelin provides a memory controller supporting dual-channel ECC DDR4 memory. With EPYC packing 4 such dies, each chip sports 4 memory controllers supporting up 16 DIMMs of 2 TiB octa-channel DDR4 ECC memory.

amd naples 2 sock.jpg amd naples server.jpg


amd naples mcp.png

In addition to the large amount of memory supported by the four Zeppelin, all EPYC offer the full 64 MiB a result of 8 MiB from each of the 8 CCXs. The way binning is done for the various EPYC models is by disabling either 1, 2, 3, or 4 cores per CCX from each of the Zeppelin dies to form either 8, 16, 24, or 32.

amd epyc interconnect.png

This image originates from a slide presented at AMD EPYC Tech Day, June 20, 2017 and shows one layer of die interconnects on the EPYC package substrate. The pink lines fanning out at the top and bottom connect to the UMCs on the respective chip. The light blue and pink lines in the center are bidirectional GMI links. The UMC connections of the top left and bottom right chip, the GMI link from the bottom left to the top right chip, and the PCIe connections are not visible in this picture. Of the four GMI interfaces on each die only the three closest to the other dies are used. It should be noted that its creator pasted Zeppelin die shots onto the image and improperly reflected the top left and bottom right chip. In reality four identical dies are used, with the top left chip mounted in the same orientation as the top right chip, and both bottom chips rotated by 180 degrees.

Die-die memory latencies

The following is the average die-to-die latencies across two dies over the infinity fabric on the EPYC 7601 (32-core, 2.2 GHz) using 16 DDR4-2666 DIMMS.

Die-to-die Latency
Die01234567
085 ns140 ns135 ns135 ns245 ns245 ns200 ns235 ns
1140 ns85 ns135 ns135 ns245 ns240 ns235 ns200 ns
2135 ns130 ns85 ns140 ns200 ns250 ns235 ns235 ns
3135 ns130 ns140 ns85 ns250 ns200 ns235 ns235 ns
4240 ns240 ns200 ns240 ns85 ns140 ns135 ns135 ns
5240 ns240 ns235 ns200 ns140 ns85 ns135 ns135 ns
6200 ns245 ns235 ns235 ns135 ns135 ns85 ns140 ns
7245 ns200 ns235 ns235 ns135 ns135 ns140 ns85 ns

Modules (Zeppelin)

In order to reduce various development costs (e.g., masks), AMD kept the number of die variations to a minimum. Zen is composed of individual modules (i.e., dies) called Zeppelins that can be interconnected in a multi-chip module to form larger systems. The Threadripper die is the same as the Ryzen die. Likewise the EPYC family uses the same die. The differences between the processors is how those dies are connected together and which features are enabled and exposed.


Each module consist of:

  • 2 Core Complexes (CCX)
  • Scalable Data Fabric (SDF)
  • Memory Interface
    • 2x Unified Memory Controllers (UMC) - one DRAM channel each; 64-bit data + ECC support, 2 DIMMs, DDR4 1333MT/s-3200MT/s
  • PSP (MP0) and SMU (MP1) microcontrollers
    • AMD Secure Processor, formerly Platform Security Processor
    • System Management Unit
  • NBIO
    • 2 SYSHUBs, 1 IOHUB with IOMMU v2.x
    • 2x8 PCIe Gen1/Gen2/Gen3
  • 6 x4 PHYs plus 5 x2 PHYs
    • Support PCIe, WAFL, xGMI (Inter-Chip Global Memory Interconnect), SATA, and Ethernet
      • Ethernet complex: Up to 4 lanes of 10/100/1000 SGMII, or 10GBASE-KR, or 1000BASE-KX Ethernet operation
  • Southbridge
    • ACPI, eMMC, GPIOs (6 ports), LPC, SMBus (2 ports), SPI/eSPI, UART (4 ports)
  • Azalia High Definition Audio
  • Up to 8 lanes of SATA Gen1/Gen2/Gen3 + legacy SATA support for SATAe
  • SGPIO
  • USB3.0 (4 ports of USB3 SuperSpeed)

zen soc.png

Memory Modes

Some Zen-based models such as Ryzen Threadripper which are based on a two-Zeppelin configuration can have large variations in performance depending on how the software was designed to make use of the available memory. Threadripper offers two different memory access modes:

The difference between the two modes is how access to the four memory controllers is done.

zen uma.png

In UMA or Distributed Mode, memory access transactions are distributed uniformly across the four memory channels. Transactions are handled by all four channels simultaneously interleaving the distributed transactions across all channels. UMA allows applications to take advantage of the entire memory bandwidth delivered by the four memory channels. Unfortunately this means that the latency of memory access will vary depending on the path it takes, for example accesses from a channel that is physically located on the second die will be slower than local accesses. This consequently means that the average memory latency will also be slightly higher therefore applications where higher bandwidth is more important than latency will enjoy the benefits of this mode greatly.

zen numa.png

In NUMA or Local Mode, the two local memory channels that are connected to the same die as the CPU that is executing the application is prioritized for the memory access. I.e. memory access transactions are done on the two local memory controllers that are physically located on the same die in order to deliver lower latency. In contrast to distributed mode, the total memory bandwidth is effectively halved. However this mode is important for many applications that are more sensitive to memory latency.

Accelerated Processing Units

zen apu if.png
See also: AMD Vega and Codename Raven Ridge

In October 2017, AMD introduced the Zen-based Accelerated Processing Unit (APUs) which incorporate four "Zen" cores along with various number of Vega-based Compute Units (CUs) under the codename Raven Ridge. Zen-based APUs are based on an entirely separate die consisting of a single CCX and a GPU. It's worth noting that on this die, the CCX is configured with half the L3 cache (i.e., 1 MiB/core instead of 2). The cache amount was most likely reduced due to power constraints. The GPU is based on the Vega graphics microarchitecture featuring up to 11 Compute Units (CUs), each with 64 32-bit floating point arithmetic units. Though it's worth noting that it's currently unknown if 16-bit SIMD operations are supported like the discrete GPUs. Operating at 1 GHz, a Zen/Vega-based APU with 11 compute units will have a peak performance of 1.408 TFLOPs, likewise, the lower-end parts with just 8 CUs will have a peak performance of 1.024 TFLOPS.

Up until Zen APUs, AMD had two separate buses: Fusion Compute Link (ONION) - a coherent bus that linked the GPU and CPU together which was used for cache snooping, and a Radeon Memory Bus (GARLIC) - a non-coherent bus that linked the GPU directly to the memory controller. Starting with Zen APUs, everything is now handled by the Infinity Fabric. The desktop Zeppelin die featured a 32-byte wide data fabric, AMD has not stated if that is also the case with Raven Ridge. On Raven Ridge, the Infinity Fabric services 6 clients: CCX, GPU, Multimedia Engine, Display Engine, Memory Controller, and the I/O and System Hub. It's worth noting that unlike previous APUs, on Raven Ridge, both the Multimedia Engine and the Display Engine are now separate from the GPU and are interconnected via the fabric.

Zen-based APUs also introduced Precision Boost 2 and Mobile Extended Frequency Range (mXFR). See #Features for more details.

Power

See also: § Power

As with the desktop parts, voltage control is done on a per-core basis with the digital Low Drop-Out (LDO) regulator. Raven Ridge extended this to the GPU as well. The regulator drops the voltage supplied to RVDD from the on-board voltage regulator module based on the highest VID. Historically, the CPU and GPU were supplied their own separate VDD. With Raven Ridge, both the CPU and GPU supply comes from a unified RVDD power rail. Power is supplied to the 4 cores and the GPU, allowing each to have their own independent P-state (i.e., voltage and frequency). Note that all the compute units in the GPU operate at the same frequency and voltage.

zen apu p-states.png
zen apu p-states utilization.png

Enhanced power gating

raven ridge power regions.png

Raven Ridge incorporates an enhanced power gating scheme to lower the average power consumption of the chip. Upon exiting P-State, the CPU enters the CC6 Idle State. When all the CPU cores enter CC6, the CPUOFF state is asserted and the shared L3 cache power is lowered. Likewise, when the GPU enters idle state, up to 95% of the GPU is power gated. A GPUOFF state further power down the GPU uncore. When both CPUOFF and GPUOFF states are asserted, the system VDD regulator is switched off.


zen apu power gating.png


Power gating on Raven Ridge is split into two regions:

  • Region A - the interface between the CPU, GPU, and I/O Hub
  • Region B - the memory controller, multimedia engine, and display interface

The two regions can be independently power gated depending on the workload. For example, during a typical movie playback, Region B is mostly active while Region A is mostly power gates only become briefly active when necessary.

Die

Core

There are 4 cores per CCX and 2 CCXs per die for 8 cores.

  • 7 mm² area
  • L2 512 KiB; 1.5 mm²/core


amd zen core.png


amd zen core (annotated).png

CCX

  • 44 mm² area
  • L3 8 MiB; 16 mm²
  • 1,400,000,000 transistors


amd zen ccx.png


amd zen ccx 2.png


amd zen ccx 2 (annotated).png

Memory Controller

  • 15 mm²
  • Two DDR4 channels
    • 72-bits each


amd zeppelin memory controller.png


amd zeppelin memory controller (annotated).png

Zeppelin

  • 14 nm process
  • 12 metal layers
  • 2,000 meters of signals
  • 4,800,000,000 transistors
  • ~22.058 mm x ~9.655 mm (Estimated)
  • 212.97 mm² die size (note that our initial measurement from tech day was off by half a millimeter on each side)


amd zen octa-core die shot.png


amd zen octa-core die shot (annotated).png

APU

  • quad-core "Zen" CPUs + "Vega" GPU with 11 CUs
  • 14 nm process
  • 4,950,000,000 transistors
  • ~19.213 mm x ~10.919 mm (Estimated)
  • 209.78 mm²
raven ridge die.png


raven ridge die (annotated).png

Sockets/Platform

All Zen-based mainstream consumer microprocessors utilizes AMD's Socket AM4, a unified socket infrastructure. All those processors are a complete system on a chip integrating the northbridge (memory controller) and the southbridge including 16 PCIe lanes for the GPU, 4 PCIe lanes for the NVMe/SATA controllers as well as USB 3.0. The chipset, however, extends the processor with a number of additional connections beyond that offered by the SoC.

Socket AM4 Platform [Edit]
Segment Chipset USB SATA SATAe PCIe RAID Dual PCIe Overclocking
3.1 G1 3.1 G2 2.0
500-series (Zen+, Zen 2, Zen 3)
Mainstream B550 2 6 6 8 + 4x NVME 0 16x Gen4 0,1,10
Enthusiast X570 0 8 4 14 + 4x NVME 0 16x Gen4 0,1,10
400-series (Zen+)
Mainstream B450 2 2 6 6 + 4x NVME 1 6x Gen3 0,1,10
Enthusiast X470 6 2 6 10 + 4x NVME 2 8x Gen3 0,1,10
300-series (Zen)
Small Form Factor A300, B300 4 0 0 2 + 2x NVMe 1 4x Gen3 0,1
X300 4 0 0 2 + 2x NVMe 1 4x Gen3 0,1
Entry-level A320 6 1 6 4 + 2x NVMe 2 4x Gen2 0,1,10
Mainstream B350 6 2 6 4 + 2x NVMe 2 6x Gen2 0,1,10
Enthusiast X370 6 2 6 6 + 2x NVMe 2 8x Gen2 0,1,10
x399 platform.png

Threadripper uses a different socket called "Socket TR4" (or sTR4 or simply TR4). This socket allows for 4 memory channels, double the number available for Ryzen providing up to 60 PCIe lanes (64 with 4 reserved for the chipset).

Socket TR4 Platform [Edit]
Chipset USB SATA SATAe PCIe RAID Dual PCIe Overclocking
3.1 G1 3.1 G2 2.0
X399 14 2 6 4 2 8x Gen2 0,1,10

All Zen Chips

 List of all Zen-based Processors
 ProcessorFeatures
ModelPriceProcessLaunchedFamilyCoreCTL3$L2$L1$FreqTurboTDPMax MemSMTAMD-VXFRSEVSMETSME
 Uniprocessors
200GE$ 55.00
€ 49.50
£ 44.55
¥ 5,683.15
14 nm
0.014 μm
1.4e-5 mm
6 September 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
220GE$ 65.00
€ 58.50
£ 52.65
¥ 6,716.45
14 nm
0.014 μm
1.4e-5 mm
21 December 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.4 GHz
3,400 MHz
3,400,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
240GE$ 75.00
€ 67.50
£ 60.75
¥ 7,749.75
14 nm
0.014 μm
1.4e-5 mm
21 December 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
3000G$ 49.00
€ 44.10
£ 39.69
¥ 5,063.17
14 nm
0.014 μm
1.4e-5 mm
20 November 2019AthlonDali, Raven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
300U14 nm
0.014 μm
1.4e-5 mm
6 January 2019AthlonPicasso244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
3150U14 nm
0.014 μm
1.4e-5 mm
6 January 2020Athlon GoldDali244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
PRO 200GE14 nm
0.014 μm
1.4e-5 mm
6 September 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
3050U14 nm
0.014 μm
1.4e-5 mm
6 January 2020Athlon SilverDali224 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.3 GHz
2,300 MHz
2,300,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
7351P$ 750.00
€ 675.00
£ 607.50
¥ 77,497.50
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7401P$ 1,075.00
€ 967.50
£ 870.75
¥ 111,079.75
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples244864 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
12 MiB
12,288 KiB
12,582,912 B
0.0117 GiB
2,304 KiB
2,359,296 B
2.25 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7551P$ 2,100.00
€ 1,890.00
£ 1,701.00
¥ 216,993.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
310114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.1 GHz
2,100 MHz
2,100,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
315114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl4816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.7 GHz
2,700 MHz
2,700,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
320114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl8816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
1.5 GHz
1,500 MHz
1,500,000 kHz
3.1 GHz
3,100 MHz
3,100,000 kHz
30 W
30,000 mW
0.0402 hp
0.03 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
3251$ 315.00
€ 283.50
£ 255.15
¥ 32,548.95
14 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
3.1 GHz
3,100 MHz
3,100,000 kHz
55 W
55,000 mW
0.0738 hp
0.055 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
325514 nm
0.014 μm
1.4e-5 mm
EPYC EmbeddedSnowy Owl81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
3.1 GHz
3,100 MHz
3,100,000 kHz
55 W
55,000 mW
0.0738 hp
0.055 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
3301$ 450.00
€ 405.00
£ 364.50
¥ 46,498.50
14 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl121232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
6 MiB
6,144 KiB
6,291,456 B
0.00586 GiB
1,152 KiB
1,179,648 B
1.125 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
335114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl122432 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
6 MiB
6,144 KiB
6,291,456 B
0.00586 GiB
1,152 KiB
1,179,648 B
1.125 MiB
1.9 GHz
1,900 MHz
1,900,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
80 W
80,000 mW
0.107 hp
0.08 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
340114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl161632 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
1.85 GHz
1,850 MHz
1,850,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
85 W
85,000 mW
0.114 hp
0.085 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
3451$ 880.00
€ 792.00
£ 712.80
¥ 90,930.40
14 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl163232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.15 GHz
2,150 MHz
2,150,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
100 W
100,000 mW
0.134 hp
0.1 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
FireFlight3 August 2018484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3 GHz
3,000 MHz
3,000,000 kHz
8 GiB
8,192 MiB
8,388,608 KiB
8,589,934,592 B
0.00781 TiB
1200$ 109.00
€ 98.10
£ 88.29
¥ 11,262.97
14 nm
0.014 μm
1.4e-5 mm
27 July 2017Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.1 GHz
3,100 MHz
3,100,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1300X$ 129.00
€ 116.10
£ 104.49
¥ 13,329.57
14 nm
0.014 μm
1.4e-5 mm
27 July 2017Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2200G$ 99.00
€ 89.10
£ 80.19
¥ 10,229.67
14 nm
0.014 μm
1.4e-5 mm
12 February 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2200GE14 nm
0.014 μm
1.4e-5 mm
19 April 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2200U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 3Raven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
2300U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
3250U14 nm
0.014 μm
1.4e-5 mm
6 January 2020Ryzen 3Dali244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.6 GHz
2,600 MHz
2,600,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
PRO 120014 nm
0.014 μm
1.4e-5 mm
Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.1 GHz
3,100 MHz
3,100,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 130014 nm
0.014 μm
1.4e-5 mm
Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2200G14 nm
0.014 μm
1.4e-5 mm
10 May 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2200GE14 nm
0.014 μm
1.4e-5 mm
10 May 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2300U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
1400$ 169.00
€ 152.10
£ 136.89
¥ 17,462.77
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge488 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1500X$ 189.00
€ 170.10
£ 153.09
¥ 19,529.37
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge4816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1600$ 219.00
€ 197.10
£ 177.39
¥ 22,629.27
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge61216 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3 MiB
3,072 KiB
3,145,728 B
0.00293 GiB
576 KiB
589,824 B
0.563 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1600X$ 249.00
€ 224.10
£ 201.69
¥ 25,729.17
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge61216 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3 MiB
3,072 KiB
3,145,728 B
0.00293 GiB
576 KiB
589,824 B
0.563 MiB
3.6 GHz
3,600 MHz
3,600,000 kHz
4 GHz
4,000 MHz
4,000,000 kHz
95 W
95,000 mW
0.127 hp
0.095 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2400G$ 169.00
€ 152.10
£ 136.89
¥ 17,462.77
14 nm
0.014 μm
1.4e-5 mm
12 February 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
386 KiB
395,264 B
0.377 MiB
3.6 GHz
3,600 MHz
3,600,000 kHz
3.9 GHz
3,900 MHz
3,900,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2400GE14 nm
0.014 μm
1.4e-5 mm
19 April 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2500U14 nm
0.014 μm
1.4e-5 mm
26 October 2017Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
2600H14 nm
0.014 μm
1.4e-5 mm
10 September 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
PRO 150014 nm
0.014 μm
1.4e-5 mm
29 June 2017Ryzen 5Summit Ridge4816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 160014 nm
0.014 μm
1.4e-5 mm
Ryzen 5Summit Ridge61216 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3 MiB
3,072 KiB
3,145,728 B
0.00293 GiB
576 KiB
589,824 B
0.563 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2400G$ 169.00
€ 152.10
£ 136.89
¥ 17,462.77
14 nm
0.014 μm
1.4e-5 mm
10 May 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.6 GHz
3,600 MHz
3,600,000 kHz
3.9 GHz
3,900 MHz
3,900,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2400GE14 nm
0.014 μm
1.4e-5 mm
10 May 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2500U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
1700$ 329.00
€ 296.10
£ 266.49
¥ 33,995.57
14 nm
0.014 μm
1.4e-5 mm
2 March 2017Ryzen 7Summit Ridge81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
3 GHz
3,000 MHz
3,000,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1700X$ 399.00
€ 359.10
£ 323.19
¥ 41,228.67
14 nm
0.014 μm
1.4e-5 mm
2 March 2017Ryzen 7Summit Ridge81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
3.4 GHz
3,400 MHz
3,400,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
95 W
95,000 mW
0.127 hp
0.095 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1800X$ 499.00
€ 449.10
£ 404.19
¥ 51,561.67
14 nm
0.014 μm
1.4e-5 mm
2 March 2017Ryzen 7Summit Ridge81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
3.6 GHz
3,600 MHz
3,600,000 kHz
4 GHz
4,000 MHz
4,000,000 kHz
95 W
95,000 mW
0.127 hp
0.095 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2700U14 nm
0.014 μm
1.4e-5 mm
26 October 2017Ryzen 7Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
2800H14 nm
0.014 μm
1.4e-5 mm
10 September 2018Ryzen 7Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.3 GHz
3,300 MHz
3,300,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
PRO 170014 nm
0.014 μm
1.4e-5 mm
Ryzen 7Summit Ridge81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
3 GHz
3,000 MHz
3,000,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 1700X14 nm
0.014 μm
1.4e-5 mm
Ryzen 7Summit Ridge81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
3.4 GHz
3,400 MHz
3,400,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
95 W
95,000 mW
0.127 hp
0.095 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2700U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 7Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
R1102G14 nm
0.014 μm
1.4e-5 mm
25 February 2020Ryzen Embedded224 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
1.2 GHz
1,200 MHz
1,200,000 kHz
2.6 GHz
2,600 MHz
2,600,000 kHz
6 W
6,000 mW
0.00805 hp
0.006 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
R1305G14 nm
0.014 μm
1.4e-5 mm
25 February 2020Ryzen Embedded244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
1.5 GHz
1,500 MHz
1,500,000 kHz
2.8 GHz
2,800 MHz
2,800,000 kHz
8 W
8,000 mW
0.0107 hp
0.008 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
R1505G$ 80.00
€ 72.00
£ 64.80
¥ 8,266.40
14 nm
0.014 μm
1.4e-5 mm
16 April 2019Ryzen EmbeddedBanded Kestrel244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
3.3 GHz
3,300 MHz
3,300,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
R1606G14 nm
0.014 μm
1.4e-5 mm
16 April 2019Ryzen EmbeddedBanded Kestrel244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.6 GHz
2,600 MHz
2,600,000 kHz
3.5 GHz
3,500 MHz
3,500,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1202B14 nm
0.014 μm
1.4e-5 mm
21 February 2018Ryzen EmbeddedGreat Horned Owl244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.3 GHz
2,300 MHz
2,300,000 kHz
3.2 GHz
3,200 MHz
3,200,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1404I14 nm
0.014 μm
1.4e-5 mm
December 2018Ryzen EmbeddedGreat Horned Owl484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1500B14 nm
0.014 μm
1.4e-5 mm
December 2018Ryzen Embedded484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
16 W
16,000 mW
0.0215 hp
0.016 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1605B14 nm
0.014 μm
1.4e-5 mm
21 February 2018Ryzen EmbeddedGreat Horned Owl484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1756B14 nm
0.014 μm
1.4e-5 mm
21 February 2018Ryzen EmbeddedGreat Horned Owl484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.25 GHz
3,250 MHz
3,250,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1780B14 nm
0.014 μm
1.4e-5 mm
December 2018Ryzen Embedded484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.35 GHz
3,350 MHz
3,350,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
V1807B14 nm
0.014 μm
1.4e-5 mm
21 February 2018Ryzen EmbeddedGreat Horned Owl484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.35 GHz
3,350 MHz
3,350,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
1900X$ 549.00
€ 494.10
£ 444.69
¥ 56,728.17
14 nm
0.014 μm
1.4e-5 mm
31 August 2017Ryzen ThreadripperWhitehaven81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
3.8 GHz
3,800 MHz
3,800,000 kHz
4 GHz
4,000 MHz
4,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
1920X$ 799.00
€ 719.10
£ 647.19
¥ 82,560.67
14 nm
0.014 μm
1.4e-5 mm
10 August 2017Ryzen ThreadripperWhitehaven122432 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
6 MiB
6,144 KiB
6,291,456 B
0.00586 GiB
1,152 KiB
1,179,648 B
1.125 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
4 GHz
4,000 MHz
4,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
1950X$ 999.00
€ 899.10
£ 809.19
¥ 103,226.67
14 nm
0.014 μm
1.4e-5 mm
10 August 2017Ryzen ThreadripperWhitehaven163232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
3.4 GHz
3,400 MHz
3,400,000 kHz
4 GHz
4,000 MHz
4,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
 Multiprocessors (dual-socket)
7251$ 574.00
€ 516.60
£ 464.94
¥ 59,311.42
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples81632 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.1 GHz
2,100 MHz
2,100,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
120 W
120,000 mW
0.161 hp
0.12 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
726114 nm
0.014 μm
1.4e-5 mm
14 June 2018EPYCNaples81664 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7281$ 650.00
€ 585.00
£ 526.50
¥ 67,164.50
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.1 GHz
2,100 MHz
2,100,000 kHz
2.7 GHz
2,700 MHz
2,700,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7301$ 825.00
€ 742.50
£ 668.25
¥ 85,247.25
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
2.7 GHz
2,700 MHz
2,700,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7351$ 1,100.00
€ 990.00
£ 891.00
¥ 113,663.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7371$ 1,550.00
€ 1,395.00
£ 1,255.50
¥ 160,161.50
14 nm
0.014 μm
1.4e-5 mm
2019EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
3.1 GHz
3,100 MHz
3,100,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
200 W
200,000 mW
0.268 hp
0.2 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7401$ 1,850.00
€ 1,665.00
£ 1,498.50
¥ 191,160.50
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples244864 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
12 MiB
12,288 KiB
12,582,912 B
0.0117 GiB
2,304 KiB
2,359,296 B
2.25 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7451$ 2,400.00
€ 2,160.00
£ 1,944.00
¥ 247,992.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples244864 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
12 MiB
12,288 KiB
12,582,912 B
0.0117 GiB
2,304 KiB
2,359,296 B
2.25 MiB
2.3 GHz
2,300 MHz
2,300,000 kHz
3.2 GHz
3,200 MHz
3,200,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7501$ 3,400.00
€ 3,060.00
£ 2,754.00
¥ 351,322.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
, 170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7551$ 3,400.00
€ 3,060.00
£ 2,754.00
¥ 351,322.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7601$ 4,200.00
€ 3,780.00
£ 3,402.00
¥ 433,986.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
3.2 GHz
3,200 MHz
3,200,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
Count: 79

References

  • IEEE Hot Chips 28 Symposium (HCS) 2016
  • AMD x86 Memory Encryption Technologies, Linux Security Summit 2016, David Kaplan, Security Architect, August 25, 2016
  • Lisa Su, AMD CEO, AMD: New Horizon Live Event
  • Lisa Su, AMD CEO, AMD Annual Meeting of Shareholders Q4 2016
  • Meet the AMD Experts - AMD Monthly Partner Training, January 2017
  • IEEE ISSCC 2017
  • AMD 'Tech Day', February 22, 2017
  • AMD Infinity Fabric introduction by Mark Papermaster, April 6, 2017
  • AMD Zen at GDC 2017, March 3, 2017
  • AMD 2017 Financial Analyst Day, May 16, 2017
  • AMD EPYC Tech Day, June 20, 2017
  • IEEE Hot Chips 29 Symposium (HCS) 2017
  • AMD Ryzen Processor With Radeon Vega Graphics, October, 2017
  • IEEE ISSCC 2018
  • Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors

Documents

Manuals

See also

codenameZen +
core count4 +, 6 +, 8 +, 12 +, 16 +, 24 + and 32 +
designerAMD +
first launchedMarch 2, 2017 +
full page nameamd/microarchitectures/zen +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerGlobalFoundries +
microarchitecture typeCPU +
nameZen +
pipeline stages19 +
process14 nm (0.014 μm, 1.4e-5 mm) +