Edit Values | |
Zen 5 µarch | |
General Info | |
Arch Type | CPU |
Designer | AMD |
Manufacturer | TSMC |
Introduction | 2024 |
Process | 4 nm, 3 nm |
Core Configs | 192, 160, 144, 128, 96, 64, 48, 32, 24, 20, 16, 12, 10, 8, 6 |
PE Configs | 384, 320, 288, 256, 192, 128, 96, 64, 48, 40, 32, 24, 20, 16, 12 |
Pipeline | |
Type | Superscalar |
OoOE | Yes |
Speculative | Yes |
Reg Renaming | Yes |
Instructions | |
ISA | AMD64, x86-64 |
Extensions | AMX, AVX, AVX2, AVX-512 |
Cores | |
Core Names | Turin, Shimada Peak, Granite Ridge, Fire Range, Strix Point |
Succession | |
Zen 5 is a microarchitecture Already released and sold being by AMD as a successor to Zen 4
Contents
History
Zen 5 was first mentioned by lead architect Michael Clark during a discussion on April 9th, 2018 [1]
Codenames
Product Codenames:
Core | Model | C/T | Target |
---|---|---|---|
Turin | EPYC 9005 | Up to 128/256 | High-end EPYC 5th Gen series server multiprocessors |
Turin Dense | EPYC 9005 | Up to 192/384 | High-performance EPYC server processors |
Shimada Peak | Ryzen 9000 | Up to 32/64 ? | Threadripper Workstation & enthusiasts market processors |
Granite Ridge | Ryzen 9000 | Up to 16/32 | Mainstream to high-end desktops & PC market processors (Gaming Desktop CPU) |
Fire Range | Ryzen 9000 | Up to 16/32 | Mainstream desktop & mobile processors |
Strix Point | Ryzen AI 300 | Up to 12/24 | Mainstream mobile processors with GPU (Gaming APU with RDNA3 or RDNA4) |
Strix Halo | Ryzen AI 300 | Up to 16/32 | High-performance ultrathin notebook processors |
Krackan Point | Ryzen AI 300 | Up to ?/? | High-performance ultrathin mobile processors |
Sonoma Valley | Ryzen APU Family | Up to ?/? | AMD Low-end Ryzen APU Family, Samsung 4 nm (TSMC) (Zen 5c Quad-core CPU, RDNA3 2CU GPU, TDP 35W) |
The Zen 5 microarchitecture powers Ryzen 9000 series desktop processors (codenamed "Granite Ridge"), Epyc 9005 server
- processors (codenamed "Turin"), and Ryzen AI 300 thin and light mobile processors (codenamed "Strix Point").
Architectural Codenames:
Arch | Codename |
---|---|
Core | Nirvana |
CCD | Eldora |
- Comparison
Core | Zen | Zen+ | Zen 2 | Zen 3 | Zen 3+ | Zen 4 | Zen 4c | Zen 5 | Zen 5c | Zen 6 | Zen 6c | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Codename | Core | Valhalla | Cerberus | Persephone | Dionysus | Nirvana | Prometheus | Morpheus | Monarch | |||
CCD | Aspen Highlands |
Breckenridge | Durango | Vindhya | Eldora | |||||||
Cores (threads) |
CCD | 8 (16) | 8 (16) | 16 (32) | ||||||||
CCX | 8 (16) | 8 (16) | 8 (16) | |||||||||
L3 cache | CCD | 32 MB | 32 MB | 32 MB | 32 MB | |||||||
CCX | 32 MB | 32 MB | 16 MB | 32 MB | ||||||||
Die size | CCD area | 44 mm2 | 66.3 mm2 | 72.7 mm2 | 70.6 mm2 | |||||||
Core area (Fab node) |
7 mm2 (14 nm) |
(12 nm) | (7 nm) | (7 nm) | (7 nm) | 3.84 mm2 (5 nm) |
2.48 mm2 (5 nm) |
(4 nm) | (3 nm) | (2 nm) | (2 nm) |
Process Technology
Zen 5 is to be produced on a 4 nm process, Zen 5c is to be produced on a 3 nm process.
Architecture
AMD Zen 5 released in July 2024. The seventh microarchitecture in the Zen microarchitecture series.
- Codenamed Granite Ridge, Strix Point, and Turin, it is slated for TSMC 4 nm or 3 nm manufacturing.
- LITTLE design
- - Improved 16% IPC and clock speed
- - possibly more L3 cache per chiplet
Key changes from Zen 4
- Core level (vs. Zen 4 microarchitectures)
- Instruction set
- AVX-512 VP2INTERSECT support
- AVX-VNNI support
- Front end
- • Branch prediction improvements
- - L1 BTB size increased significantly from 1.5K → 16K (10.7x)
- - L2 BTB size increases from 7K → 8K
- - Increased size of TAGE
- - Introduction of 2-ahead predictor structure
- - Return stack size increased from 32 → 52 entries (+62.5%)
- • Improved instruction cache latency and bandwidth
- - Instruction fetch bandwidth increased from 32B → 64B per cycle
- - L2 instruction TLB size increased from 512 → 2048 entries (4x)
- • Introducing a dual decode pipeline
- - Decoder throughput scaled from 4 to 8 (2x4) per cycle (4 per thread, 4 in single thread)
- - Op cache throughput expanded from 9 → 12 (2x6) per cycle (6 per thread, 6 for single thread)
- - Unlike Intel E-Core, where a single thread can utilize multiple clusters, one cluster is used per SMT thread.
- Back end
- • Dispatch width of integer operations expanded from 6 → 8
- • The size of ROB (reorder buffer) has been expanded from 320 to 448 entries (+40%)
- • Integer register file capacity expanded from 192 → 240 entries (+25%)
- • Floating point register file capacity expanded from 192 to 384 entries (2x)
- • Flag register file capacity expanded to 192 entries
- • Increased size of integer scheduler
- - Scheduler size expanded from 4x24 (=96) → 88+56 (=144) entries (+50%)
- - Adoption of integrated scheduler configuration similar to Intel P-Core
- • Increased size of floating point scheduler
- - The size of the pre-scheduler queue has been expanded from 64 to 96 entries (+50%).
- - Scheduler size expanded from 2x32 (=64) → 3x38 (=114) entries (+78%)
- • Number of ALUs increased from 4 → 6 (+50%)
- • Number of multiplication units increases from 1 → 3 (3x)
- • Number of branch units increased from 2 → 3 (+50%)
- • Number of AGU increased from 3 → 4 (+33%)
- - Number of loads that can be processed per cycle increased from 3 → 4 (same as 2 for 128 bits or more)
- - Number of 128/256 bit stores that can be processed per cycle increased from 1 → 2
- Desktop and server products such as Granite Ridge can process AVX-512 SIMD in one cycle.
- However, mobile products process 256 bits in two cycles like the previous Zen 4.
- Memory subsystem
- • Load/Store Queue
- - Increased size
- • Prefetcher
- - Added 2D stride prefetcher
- - Improved stream & region prefetcher
- • L1 data cache
- - Capacity increased from 32 KB → 48 KB
- - Associativity increases from 8-way → 12-way
- - Bandwidth doubled
- • L2 data cache
- - Associativity increases from 8-way → 16-way
- - Bandwidth increases from 32B → 64B per cycle
- • L3 data cache
- - Slight improvement in latency
- - Maximum number of in-flight misses increased to 320
- Physical design
- Improved power gating technology
- The overall expansion of the architecture has improved performance per clock
- by an average of 16% compared to the previous generation.
Members
9005 Series (Zen 5)
- See also: Turin and Zen 5 µarch
The fifth generation of EPYC processors was launched on October 10, 2024, at AMD's Advancing AI event, with general availability beginning in November 2024. Based on the Zen 5 microarchitecture, the 9005 series, codenamed "Turin", is manufactured by TSMC using a 4 nm process for standard Zen 5 cores and a 3 nm process for Zen 5c cores.
It utilizes the Socket SP5 socket, maintaining compatibility with the previous generation. The series offers core counts ranging from 8 cores to 192 cores, with support for up to 12 channels of DDR5-6000 memory (up to 6 TiB per socket) and 128 PCIe 5.0 lanes, enhancing performance and efficiency for high-performance computing, cloud, and AI workloads.
The series includes standard Zen 5 models, high-frequency "F" SKUs, single-socket "P" SKUs, and dense Zen 5c models, with TDPs ranging from 155 W to 500 W.
List of Zen 5-based EPYC Processors | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Specs | Frequency | ||||||||||||||||||||||||
Model | Price | Launched | Cores | Threads | L2$ | L3$ | TDP | Memory | Base Freq | Max Boost | |||||||||||||||
Uniprocessors | |||||||||||||||||||||||||
EPYC 9015P | $ 527 | November 2024 | 8 | 16 | 8 MiB | 32 MiB | 155 W | DDR5-6000 | 3.8 GHz | 4.1 GHz | |||||||||||||||
EPYC 9125P | $ 1,121 | November 2024 | 16 | 32 | 16 MiB | 64 MiB | 200 W | DDR5-6000 | 4.0 GHz | 4.3 GHz | |||||||||||||||
EPYC 9355P | $ 4,771 | November 2024 | 32 | 64 | 32 MiB | 256 MiB | 300 W | DDR5-6000 | 3.65 GHz | 4.05 GHz | |||||||||||||||
EPYC 9755P | $ 12,984 | November 2024 | 128 | 256 | 128 MiB | 256 MiB | 400 W | DDR5-6000 | 2.7 GHz | 4.1 GHz | |||||||||||||||
Multiprocessors (dual-socket) | |||||||||||||||||||||||||
EPYC 9015 | $ 527 | November 2024 | 8 | 16 | 8 MiB | 32 MiB | 155 W | DDR5-6000 | 3.8 GHz | 4.1 GHz | |||||||||||||||
EPYC 9115 | $ 744 | November 2024 | 12 | 24 | 12 MiB | 32 MiB | 155 W | DDR5-6000 | 3.6 GHz | 4.0 GHz | |||||||||||||||
EPYC 9125 | $ 1,121 | November 2024 | 16 | 32 | 16 MiB | 64 MiB | 200 W | DDR5-6000 | 4.0 GHz | 4.3 GHz | |||||||||||||||
EPYC 9175F | $ 2,624 | November 2024 | 16 | 32 | 16 MiB | 512 MiB | 320 W | DDR5-6000 | 4.2 GHz | 5.0 GHz | |||||||||||||||
EPYC 9215 | $ 1,518 | November 2024 | 20 | 40 | 20 MiB | 64 MiB | 200 W | DDR5-6000 | 3.7 GHz | 4.1 GHz | |||||||||||||||
EPYC 9255 | $ 2,238 | November 2024 | 24 | 48 | 24 MiB | 96 MiB | 240 W | DDR5-6000 | 3.65 GHz | 4.05 GHz | |||||||||||||||
EPYC 9275F | $ 3,224 | November 2024 | 24 | 48 | 24 MiB | 96 MiB | 300 W | DDR5-6000 | 4.1 GHz | 4.8 GHz | |||||||||||||||
EPYC 9335 | $ 2,991 | November 2024 | 32 | 64 | 32 MiB | 128 MiB | 240 W | DDR5-6000 | 3.35 GHz | 3.9 GHz | |||||||||||||||
EPYC 9355 | $ 4,771 | November 2024 | 32 | 64 | 32 MiB | 256 MiB | 300 W | DDR5-6000 | 3.65 GHz | 4.05 GHz | |||||||||||||||
EPYC 9375F | $ 5,198 | November 2024 | 32 | 64 | 32 MiB | 256 MiB | 320 W | DDR5-6000 | 4.0 GHz | 4.8 GHz | |||||||||||||||
EPYC 9455 | $ 5,987 | November 2024 | 48 | 96 | 48 MiB | 256 MiB | 300 W | DDR5-6000 | 3.25 GHz | 3.85 GHz | |||||||||||||||
EPYC 9535 | $ 6,876 | November 2024 | 64 | 128 | 64 MiB | 256 MiB | 300 W | DDR5-6000 | 2.9 GHz | 3.75 GHz | |||||||||||||||
EPYC 9555 | $ 9,251 | November 2024 | 64 | 128 | 64 MiB | 256 MiB | 360 W | DDR5-6000 | 3.2 GHz | 4.0 GHz | |||||||||||||||
EPYC 9575F | $ 10,166 | November 2024 | 64 | 128 | 64 MiB | 256 MiB | 400 W | DDR5-6000 | 3.5 GHz | 5.0 GHz | |||||||||||||||
EPYC 9655 | $ 10,592 | November 2024 | 96 | 192 | 96 MiB | 256 MiB | 400 W | DDR5-6000 | 2.7 GHz | 4.1 GHz | |||||||||||||||
EPYC 9745 | $ 11,494 | November 2024 | 128 | 256 | 128 MiB | 256 MiB | 400 W | DDR5-6000 | 2.4 GHz | 3.8 GHz | |||||||||||||||
EPYC 9755 | $ 12,984 | November 2024 | 128 | 256 | 128 MiB | 256 MiB | 400 W | DDR5-6000 | 2.7 GHz | 4.1 GHz | |||||||||||||||
EPYC 9565 | $ 12,593 | November 2024 | 96 | 192 | 96 MiB | 384 MiB | 400 W | DDR5-6000 | 2.8 GHz | 4.0 GHz | |||||||||||||||
EPYC 9665 | $ 13,630 | November 2024 | 96 | 192 | 96 MiB | 384 MiB | 400 W | DDR5-6000 | 3.0 GHz | 4.2 GHz | |||||||||||||||
EPYC 9755F | $ 13,999 | November 2024 | 128 | 256 | 128 MiB | 256 MiB | 500 W | DDR5-6000 | 3.1 GHz | 4.4 GHz | |||||||||||||||
EPYC 9825 | $ 13,999 | November 2024 | 144 | 288 | 144 MiB | 384 MiB | 400 W | DDR5-6000 | 2.6 GHz | 3.9 GHz | |||||||||||||||
EPYC 9845 | $ 14,399 | November 2024 | 160 | 320 | 160 MiB | 384 MiB | 400 W | DDR5-6000 | 2.4 GHz | 3.7 GHz | |||||||||||||||
EPYC 9965 | $ 14,813 | November 2024 | 192 | 384 | 192 MiB | 384 MiB | 500 W | DDR5-6000 | 2.25 GHz | 3.7 GHz | |||||||||||||||
Frequency-optimized SKUs | |||||||||||||||||||||||||
EPYC 9175F | $ 2,624 | November 2024 | 16 | 32 | 16 MiB | 512 MiB | 320 W | DDR5-6000 | 4.2 GHz | 5.0 GHz | |||||||||||||||
EPYC 9275F | $ 3,224 | November 2024 | 24 | 48 | 24 MiB | 96 MiB | 300 W | DDR5-6000 | 4.1 GHz | 4.8 GHz | |||||||||||||||
EPYC 9375F | $ 5,198 | November 2024 | 32 | 64 | 32 MiB | 256 MiB | 320 W | DDR5-6000 | 4.0 GHz | 4.8 GHz | |||||||||||||||
EPYC 9575F | $ 10,166 | November 2024 | 64 | 128 | 64 MiB | 256 MiB | 400 W | DDR5-6000 | 3.5 GHz | 5.0 GHz | |||||||||||||||
EPYC 9755F | $ 13,999 | November 2024 | 128 | 256 | 128 MiB | 256 MiB | 500 W | DDR5-6000 | 3.1 GHz | 4.4 GHz | |||||||||||||||
Count: 0 | |||||||||||||||||||||||||
32 : |
Designers
- David Suggs, chief architect
Bibliography
See also
|
|
|
|
|
. |
codename | Zen 5 + |
core count | 192 +, 160 +, 144 +, 128 +, 96 +, 64 +, 48 +, 32 +, 24 +, 20 +, 16 +, 12 +, 10 +, 8 + and 6 + |
designer | AMD + |
first launched | 2024 + |
full page name | amd/microarchitectures/zen 5 + |
instance of | microarchitecture + |
instruction set architecture | AMD64 + and x86-64 + |
manufacturer | TSMC + |
microarchitecture type | CPU + |
name | Zen 5 + |
process | 4 nm (0.004 μm, 4.0e-6 mm) + and 3 nm (0.003 μm, 3.0e-6 mm) + |
processing element count | 384 +, 320 +, 288 +, 256 +, 192 +, 128 +, 96 +, 64 +, 48 +, 40 +, 32 +, 24 +, 20 +, 16 + and 12 + |