From WikiChip
Difference between revisions of "amd/microarchitectures/zen"
< amd‎ | microarchitectures

(SenseMI Technology)
(Brands)
Line 107: Line 107:
 
== Brands ==
 
== Brands ==
 
[[File:amd ryzen black bg logo.png|thumb|right|Ryzen brand logo]]
 
[[File:amd ryzen black bg logo.png|thumb|right|Ryzen brand logo]]
{{future information}}
 
  
 
{| class="wikitable" style="text-align: center;"
 
{| class="wikitable" style="text-align: center;"

Revision as of 03:12, 3 March 2017

Edit Values
Zen µarch
General Info
Arch TypeCPU
DesignerAMD
ManufacturerGlobalFoundries
IntroductionMarch 2, 2017
Process14 nm
Core Configs2, 4, 6, 8
Pipeline
TypeSuperscalar
SpeculativeYes
Reg RenamingYes
Stages7-19?
"?" can not be assigned to a declared number type with value 19.
Instructions
ISAx86-16, x86-32, x86-64
ExtensionsMOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, RDRND, F16C, BMI, BMI2, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVE, SHA, CLZERO
Cache
L1I Cache64 KiB/core
4-way set associative
L1D Cache32 KiB/core
8-way set associative
L2 Cache512 KiB/core
8-way set associative
L3 Cache2 MiB/core
Up to 16-way set associative
Cores
Core NamesRaven Ridge,
Summit Ridge,
Snowy Owl,
Naples
Succession

Zen (family 17h) is the microarchitecture developed by AMD as a successor to both Excavator and Puma. Zen is an entirely new design, built from the ground up for optimal balance of performance and power capable of covering the entire computing spectrum from fanless notebooks to high-performance desktop computers. Zen is set to be released in early-2017. Zen is set to be eventually replaced by Zen+.

For performance desktop computing, Zen is branded as Ryzen 3, Ryzen 5, and Ryzen 7 processors.

Etymology

Zen was picked by Michael Clark, AMD's senior fellow and lead architect. Zen was picked to represent the balance needed between the various competing aspects of a microprocessor - transistor allocation/die size, clock/frequency restriction, power limitations, and new instructions to implement.

Codenames

Symbol version future.svg Preliminary Data! Information presented in this article deal with future products, data, features, and specifications that have yet to be finalized, announced, or released. Information may be incomplete and can change by final release.
Zen Logo
Core C/T Target
Naples 32/64 High-end server multiprocessors
Snowy Owl 16/32 Mid-range server processors
Summit Ridge 8/16 High-end desktops & enthusiasts market
Raven Ridge 4/8 Mainstream desktop & mobile processors with GPU

Brands

Ryzen brand logo
Family General Description Differentiating Features
Cores Unlocked AVX2 SMT XFR IGP
Ryzen 3 Low-end Performance Quad ✔/✘
Ryzen 5 Mid-range Performance Quad ✔/✘
Hexa ✔/✘
Ryzen 7 High-end Performance / Enthusiasts Octa ✔/✘
  • Note: While a model has an unlocked multiplier, not all chipsets support overclocking. (see §Sockets)
  • Note: 'X' models will enjoy "Full XFR" providing an additional +100 MHz when sufficient thermo/electric requirements are met. Non-X models are limited to just +50 MHz.

Release Dates

The first set of processors, as part of the Ryzen 7 family were introduced at an AMD event on February 22 before the Game Developer Conference (GDC). However initial models don't get shipped until March 2. Server processors are set to be released in by the end of Q2, 2017. Mobile processors are expected to be released by the end of 2017.

Process Technology

Zen is planned to be manufactured on Global Foundries' 14 nm process, same one used by IBM for their POWER9. AMD's previous microarchitectures were based on 32 and 28 nanometer processes. The jump to 14 nm is part of AMD's attempt to remain competitive against Intel (Both SkyLake and Kaby Lake are also manufactured on 14 nm although by late 2017 Intel plans on moving on to Cannonlake and 10 nm process). The move to 14 nm will bring along related benefits of a smaller node such as reduced heat and power consumption for identical designs.

Compatibility

Linux added initial support for Zen starting with Linux Kernel 4.1. Microsoft will only support Windows 10 for Zen.

Vendor OS Version Notes
Microsoft Windows Windows 7 No Support
Windows 8 No Support
Windows 10 Support
Linux Linux Kernel 4.1 Initial Support

Compiler support

Compiler Arch-Specific Arch-Favorable
GCC -march=znver1 -mtune=znver1
LLVM -march=znver1 -mtune=znver1
Visual Studio /arch:AVX2  ?

Architecture

AMD Zen is an entirely new design from the ground up which introduces considerable amount of improvements and design changes over Excavator. Zen-based microprocessors will utilize AMD's Socket AM4 unified platform.

Key changes from Excavator

  • Zen was designed to succeed BOTH Excavator (High-performance) and Puma (Low-power) covering the entire range in one architecture
    • Cover the entire spectrum from fanless notebooks to high-performance desktops
    • More aggressive clock gating with multi-level regions
    • Power focus from design, employs low-power design methodologies
      • >15% switching capacitance (CAC) improvement
  • Utilizes 14 nm process (from 28 nm)
  • 52% improvement in IPC per core for a single-thread (From Excavator)
  • Return to conventional high-performance x86 design
    • Traditional design for cores without shared blocks (e.g. shared SIMD units)
    • Large beefier core design
  • Core engine
    • Simultaneous Multithreading (SMT) support, 2 threads/core (see § Simultaneous MultiThreading for details)
    • Branch Predictor
      • Improved branch mispredictions
        • Better branch predicitons with 2 branches per BTB entry
        • Lower miss latency penalty
      • BP is now decoupled from fetch stage
    • Large Op cache (2K instructions)
    • Wider μop dispatch (6, up from 4)
    • Larger instruction scheduler
      • Integer (84, up form 48)
      • Floating Point (96, up form 60)
    • Larger retire throughput (8, up from 4)
    • Larger Retire Queue (192, up from 128)
      • duplicated for each thread
    • Larger Load Queue (72, up from 44)
    • Larger Store Queue (44, up from 32)
      • duplicated for each thread
    • Quad-issue FPU (up from 3-issue)
    • Faster Load to FPU (down to 7, from 9 cycles)
  • Cache system
    • L1
      • 64 KiB (double from previous capacity of 32 KiB)
      • Write-back L1 cache eviction policy (From write-through)
      • 2x the bandwidth
    • L2
      • 2x the bandwidth
      • Faster L2 cache
    • Faster L3 cache
    • Large Op cache
    • Better L1$ and L2$ data prefetcher
    • 5x L3 bandwidth
    • Move elimination block added
    • Page Table Entry (PTE) Coalescing

New instructions

Zen introduced a number of new x86 instructions:

  • ADX - Multi-Precision Add-Carry Instruction extension
  • RDSEED - Hardware-based RNG
  • SMAP - Supervisor Mode Access Prevention
  • SHA - SHA extensions
  • CLFLUSHOPT - Flush Cache Line
  • XSAVE - Privileged Save/Restore
  • CLZERO - Zero-out Cache Line (AMD exclusive)

While not new, Zen also supports AVX, AVX2, FMA3, BMI1, BMI2, AES, RdRand, SMEP. Note that with Zen, AMD dropped support for FMA4, XOP, TBM, and LWP.

Block Diagram

Individual Core

Symbol version future.svg Preliminary Data! Information presented in this article deal with future products, data, features, and specifications that have yet to be finalized, announced, or released. Information may be incomplete and can change by final release.

zen block diagram.svg

Memory Hierarchy

  • Cache
    • L1I Cache:
      • 64 KiB 4-way set associative
        • 32 B line size
        • shared by the two threads, per core
    • L1D Cache:
      • 32 KiB 8-way set associative
        • 32 B line size
        • write-back policy
      • 4-5 cycles latency for Int
      • 7-8 cycles latency for FP
    • L2 Cache:
      • 512 KiB 8-way set associative
      • 32 B line
      • write-back policy
      • 12 cycles latency
    • L3 Cache:
      • 2 MiB/core, shared across all cores.
      • Up to 16-way set associative
      • Write-back policy
      • 35 cycles latency
    • System DRAM:
      • 2 Channels

Zen TLB consists of dedicated level one TLB for instruction cache and another one for data cache.

  • TLBs
    • ITLB
      • 8 entry L0 TLB, all page sizes
      • 64 entry L1 TLB, all page sizes
      • 512 entry L2 TLB, no 1G pages
    • DTLB
      • 64 entry, all page sizes
    • STLB
      • 1,532-entry data, no 1G pages
      • 512-entry instruction

Pipeline

amd zen hc28 page 0004.jpg

Zen presents a major design departure from the previous couple of microarchitectures. In the pursuit of remaining competitive against Intel, AMD went with a similar approach to Intel's: large beefier core with SoC design that can scale from extremely low TDP (fanless devices) to supercomputers utilizing dozens of cores. As such, Zen is aimed at replacing both Excavator (AMD's previous performance microarchitecture) and Puma (AMD's previous ultra-low power arch). In addition to covering the entire computing spectrum through power efficiency and core scalability, another major design goal was 40% uplift in single-thread performance (i.e. 40% IPC increase) from Excavator. The large increase in performance is the result of major redesigns in all four areas of the core (the front end, the execution engine, and the memory subsystem) as well as Zen's new SoC CCX (CPU Complex) modular design. The core itself is wider and all around bigger (roughly every component had its capacity substantially increased). The improvement in power efficiency is the result of the 14 nm process used as well as many low-power design methodologies that were utilized early on in the design process (Excavator has been manufactured on GF's 28 nm process). AMD introduced various components (such as their new prediction flow and forwarding mechanisms) that eliminate the need for operations to go through the high power ALUs and decoders, increasing the overall power efficiency and throughput.

Broad Overview

At a very broad view, Zen shares some similarities with its predecessor but introduces new elements and major changes. Each core is composed of a front end (in-order area) that fetches instructions, decodes them, generates µOPs and fused µOPs, and sends them to the Execution Engine (out-of-order section). Instructions are either fetched from the L1I$ or come from the µOPs cache (on subsequent fetches) eliminating the decoding stage altogether. Zen decodes 4 instructions/cycle into the µOP Queue. The µOP Queue dispatches separate µOPs to the Integer side and the FP side (dispatching to both at the same time when possible).

amd zen hc28 overview.png

The biggest departure from previous generation is Zen's return to traditional core partitioning - every core is an independent core with its own floating-point/SIMD units and a L2 cache. Previously, those units were shared between two cores; they are now once again completely private.

Unlike many of Intel's recent microarchitectures (such as Skylake and Kaby Lake) which make use of a unified scheduler, AMD continue to use a split pipeline design. µOP are decoupled at the µOP Queue and are sent through the two distinct pipelines to either the Integer side or the FP side. The two sections are completely separate, each featuring separate schedulers, queues, and execution units. The Integer side splits up the µOPs via a set of individual schedulers that feed the various ALU units. On the floating point side, there is a different scheduler to handle the 128-bit FP operations. Zen support all modern x86 extensions including AVX/AVX2, BMI1/BMI2, and AES. Zen also supports SHA, secure hash implementation instructions that are currently only found in Intel's ultra-low power microarchitectures (e.g. Goldmont) but not in their mainstream processors.

From the memory subsystem point of view, data is fed into the execution units from the L1D$ via the load and store queue (both of which were almost doubled in capacity) via the two Address Generation Units (AGUs) at the rate of 2 loads and 1 store per cycle. Each core also has a 512 KiB level 2 cache. L2 feeds both the the level 1 data and level 1 instruction caches at 32B per cycle (32B can be send in either direction (bidirectional bus) each cycle). L2 is connected to the L3 cache which is shared across all cores. As with the L1 to L2 transfers, the L2 also transfers data to the L3 and vice versa at 32B per cycle (32B in either direction each cycle).

Front End

amd zen hc28 fetch.png

The Front End of the Zen core deals with the in-order operations such as instruction fetch and instruction decode. The instruction fetch is composed of two paths: a traditional decode path where instructions come from the instruction cache and a µOPs cache that are determined by the branch prediction (BP) unit. The instruction stream and the branch prediction unit track instructions in 64B windows.

The branch prediction unit is decoupled and can start working as soon as it receives a desired operation such as a redirect, ahead of traditional instruction fetches. AMD still uses a hashed perceptron system similar to the one used in Jaguar and Bobcat, albeit likely much more finely tuned. AMD stated it's also larger than previous architectures but did not disclose actual sizes. Once the BP detects an indirect target operation, the branch is moved to the Indirect Target Array (ITA) which is 512 entry deep. The BP includes a 32-entry return stack.

In Zen, AMD moved the instruction TLB to BP (to much earlier in the pipeline than in previous architectures). This was done to allow for more-aggressive prefetching by allowing the physical address to be retrieved at an earlier stage. The BP is capable of storing 2 branches per BTB (Branch Target Buffer) entry, reducing the number of BTB reads necessary. ITLB is composed of:

  • 8-entry L0 TLB, all page sizes
  • 64-entry L1 TLB, all page sizes
  • 512-entry L2 TLB, no 1G pages

Instructions are fetched from the L2 cache at the rate of 32B/cycle. Zen does not have an even L1$. The instruction cache is 64 KiB, double that of the data cache. Depending on the branch prediction decision instructions may be fetched from the instruction cache or from the µOPs in which case costly decoding will be avoided.

amd zen hc28 decode.png

On the traditional side of decode instructions are fetched from the L1$ at 32B/cycle and go to the instruction byte buffer and through the pick stage to the decode. The size of the instruction byte buffer was not given by AMD but it's expected to be larger than the 16-entry structure found in the previous architecture. The decode allows for four x86 instructions to be decoded per cycle which are in turn sent to the µOP Queue. While up to 8µOPs/cycle can be emitted, usually 4µOPs/cycle are emitted from the Decoder because most instructions map to one µOP. Ideally, most instructions get a hit from the BP and acquire a µOP tag, sending them directly to be retrieved from the µOP cache which are then sent to the µOP Queue. This bypasses most of the expensive fetching and decoding that would otherwise be needed to be done. At this stage of the pipeline, Zen performs additional optimizations such as branch fusion - an operation where a comparison and branch op gets combined into a single µOP (resulting in a single schedule+single execute).

At the decode stage Zen incorporates the microcode ROM and the Stack Engine Memfile (SEM). The new Memfile sits between the queue and dispatch monitoring the µOP traffic. The Memfile is capable of performing store-to-load forwarding right at dispatch for loads that trail behind known stores with physical addresses. Other things such as eliminating stack PUSH/POP operations are also done at this stage. This is a low-power solution that off-loads some of the work that is usually done by the AGU.

Dispatch is capable of sending up to 6 µOPs to Integer EX and an additional 4 µOPs to the Floating Point (FP) EX. Zen can dispatch to both at the same time (i.e. for a maximum of 10 µOPs per cycle).

Execution Engine

amd zen hc28 integer.png

As mentioned early, Zen returns to a fully partitioned core design with a private L2 cache and private FP/SIMD units. Previously those units were shared resources spanning two cores. Zen's Execution Engine (Back-End) is split into two major sections: integer & memory operations and floating point operations. The two sections are decoupled with independent schedulers and queues. Both Integer and FP sections have access to the Retire Queue which is 192 entries and can retire 8 instructions per cycle (independent of either Integer or FP). The wider-than-dispatch retire allows Zen to catch up and free the resources much quicker (previous architectures saw bottleneck at this point in situations where an older op is stalling causing a reduction in performance due to retire needing to catch up to the front of the machine).

Integer

The Integer Execute can receive up to 6 µOPs/cycle from Dispatch where it is mapped from logical registers to physical registers. Zen has a 168-entry physical integer register file, an identical size to that of Broadwell. Instead of a large scheduler, Zen has 6 distributed scheduling queues, each 14 entries deep (4xALU, 2xAGU). Zen includes a number of enhancements such as differential checkpoints tracking branch instructions and eliminating redundant values as well as move eliminations. Note that register moves are done internally by modifying the register mapping rather than through an execution of a µOP. Zen can work on two branches per cycle in the two ALUs that support that operation. While AMD stated that the ALUs are largely symmetric except for a number of exceptions, it's still unknown which operations are reserved to which units.

Floating Point
amd zen hc28 fp.png

The Floating Point side can receive up to 4 µOPs/cycle from Dispatch where it is mapped from logical registers to physical registers. Zen has a 160-entry physical floating point register file which is 8 entries smaller than the one used in Intel's Skylake/Kaby Lake architectures. The register file can perform direct transfers to the Integer register files as needed. Before ops go to the scheduling queue, they go through the Non-Scheduling Queue (NSQ) first which is essentially a wait buffer. Because FP instructions typically have higher latency, they can create a back-up at Dispatch. The non-scheduling queue attempts to reduce this by queuing more FP instructions which lets Dispatch continue on as much as possible on the Integer side. Additionally, the NSQ can go ahead and start working on the memory components of the FP instructions so that they can be ready once they go through the Scheduling Queue. The FP has a single pipe for 128-bit load operations. The FP scheduler has four pipes (1 more than that of Excavator) and operates on 128-bit floating point. In fact, the entire FP side is optimized for 128-bit operations. Zen supports all the latest instructions such as SSE and AVX1/2. The various 265-bit AVX1/2 operations are done by working on individual 128-bit chunks at a time and fuse them together - this does mean 256-bit instructions require twice the resources all-around including (i.e., 2x register+scheduler entries). This does put Zen behind Intel's latest architectures which do have dedicated 265-bit circuitry. Additionally Zen also supports SHA and AES with 2 AES units implemented in an attempt to improve encryption performance.

Memory Subsystem

amd zen hc28 memory.png

Loads and Stores are conducted via the two AGUs which can operate simultaneously. Zen has a much larger load queue capable of supporting 72 out-of-order loads (same as Intel's Skylake). There is also a 44-entry Store Queue. Zen employs a split TLB-data pipe design which allows TLB tag access to take place while the data cache is being fed in order to determine if the data is available and send their address to the L2 to start prefetching early on. Zen is capable of up to two loads per cycle (2x16B each) and up to one store per cycle (1x16B). The L1 TLB is 64-entry for all page sizes and the L2 TLB is a 1536-entry with no 1 GiB pages.

Zen incorporates a 64 KiB 4-way set associative L1 instruction cache an a 32 KiB 8-way set associative L2 data cache. Both the instruction cache and the data cache can fetch from the L2 cache at 32 Bytes per cycle. The L2 cache is a 512 KiB 8-way set associative unified cache, inclusive, and private to the code. The L2 cache can fetch and write 32B/cycle into the L3 (32B in either direction each cycle, i.e. bidirectional bus).

Features

AMD introduced a series of new features in their new Zen microarchitecture:

Simultaneous MultiThreading (SMT)

Perhaps the single biggest enhancement to Zen is the addition of full-fledged simultaneous multithreading (SMT) support (a technology similar to Hyper-Threading found in Intel processors). This is a departure from AMD's previous lightweight (and largely ineffective and to some degree misleading) Clustered Multithreading (CMT). Zen is a properly simultaneous multi-threaded machine capable of handling two threads of execution throughout the entire machine. Below is a breakdown of how the various core components work under SMT:

amd zen hc28 smt.png
  •          - Competitively shared structures
  •          - Competitively shared and SMT tagged
  •          - Competitively shared with Algorithmic Priority
  •          - Statically Partitioned

The basics behind SMT are always the same: high utilization of resources through multiple threads of execution. When a single thread is running all structures become fully available to that thread as needed. With the introduction of SMT and a second thread, Zen attempts to share as much of the resources as possible in an attempt to balance out the throughput and deliver the appropriate structures to each thread as the software requires. The various structures can dynamically shift their resources depending on the kind of workload being executed. Structures that are competitively shared by the two threads (shaded in red in the diagram) include the execution units, schedulers, register file, the decode, and cache (including the µOP cache). The load queue, ITLB, and DTLB (shaded in dark cyan) are also competitively shared but require SMT tagging - resources (i.e. entries capacity) are shared between the threads but actual entry values (e.g. addresses) can only be accessed by the owning thread.

The branch predictor and the two register renaming/allocation units (shaded in blue) are competitively shared with algorithmic priority. Zen provides additional logic to give a certain thread temporary priority in resource allocation over the other thread. One such occasion is when the BP encounters a flush on one of the threads. Temporary priority is given to that thread in order to help it fetch much instructions as it could so it can get going again. Additionally, similar logic can be found at dispatch to ensure good throughput by both threads and high utilization of the execution units.

The µOP Queue, Retire Queue, and Store Queue (shaded in green on the diagram) are statically partitioned, i.e. those units have duplicate logic to handle each thread independently. Those were duplicated instead of shared simply due to the high complexity involved in doing so.

SenseMI Technology

SenseMI Technology (pronounced Sense-Em-Eye) is an umbrella term for a number of features AMD added to Zen microprocessors designed to increase performance through various ways:

10682-icon-neural-net-prediction-140x140.png

Neural Net Prediction - This appears to be largely marketing term for Zen's much beefier and more finely tune branch prediction unit. Zen uses a hashed perceptron system to intelligently anticipate future code flows, allowing warming up of cold blocks in order to avoid possible waits. Most of that functionality is already found on every modern high-end microprocessor (including AMD's own previous microarchitectures). Because AMD has not disclosed any more specific information about BP, it can only be speculated that no new groundbreaking logic was introduced in Zen.

10682-icon-smart-prefetch-140x140.png

Smart Prefetch - As with the Prediction Unit, this too appears to be a marketing term for the number of changes AMD introduced in the fetch stage where the the branch predictor can get a hit on the next µOP and retrieve it via the µOPs cache directly to the µOPs Queue, eliminating the costly decode pipeline stages.

10682-icon-pure-power-140x140.png

Pure Power - A feature in Zen that allows for dynamic voltage and frequency scaling (DVFS), similar to AMD's PowerTune technology, along with a number of other enhancements that extends beyond the core to the Infinity Fabric (AMD's new proprietary interconnect). Pure Power monitors the temperature, frequency, and voltage of the chip which in term gets used by Precision Boost and Extended Frequency Range

10682-icon-precision-boost-140x140.png

Precision Boost - A feature that provides the ability to adjust the frequency of the processor on-the-fly given sufficient headroom (e.g. thermal limits based on the sensory data collected by Pure Power), i.e. "Turbo Frequency". Precision Boost adjusts in 25 MHz increments, considerably more granular when compared to Intel's Turbo Boost which operates at 100 MHz bin increments.

amd zen xfr.jpg
10682-icon-frequency-range-140x140.png

Extended Frequency Range (XFR) - This is a fully automated solution that attempts to allow higher upper limit on the maximum frequency based on the cooling technique used (e.g. air, water, LN2). Whenever the chip senses that it's suitable enough for a given frequency, it will attempt to increase that limit further. XFR is partially enabled on all models, providing an extra +50 MHz frequency boost whenever possible. For 'X' models, full XFR is enabled providing twice the headroom of up to +100 MHz.


ryzen-xfr-1800x example.jpg

The AMD presentation slide on the right depicts a normal use case for the Ryzen 7 1800X. When under normal workload, the processor will operate at around its base frequency of 3.6 GHz. When expericing havier workload, Precision Boost will kick in increment it as necessary up to its maximum frequency of 4 GHz. With adequate cooling, XFR will bump it up an additional 100 MHz. When light workload get experienced, the processor will reduce its frequency. A Pure Power senses the workload and CPU state, it can also drastically downclock the CPU when appropriate (such as in the graph during mostly idle).

Scalability

CPU Complex (CCX)

AMD organized Zen in groups of cores called a CPU Complex (CCX). Each CCX consists of four cores connected to an L3 cache. The L3 cache is an 8 MiB 16-way set associative and is mostly exclusive of the L2. The L3 cache is made of four slices (providing 2 MiB L3 slice/core) organized by low-order address interleaved. Every core can access every L3 cache slice with the same average latency.

Depending on the exactly processor model, an 8-core processor will incorporate two CPU Complexes. It's important to note that the L3 in Zen is not a true last level cache (LLC) as the 16 MiB L3$ will consist of two separate 8 MiB and not one unified L3. While no details have yet been disclosed, AMD did state that the separate complexes can communicate with each other via their custom fabric which connects the CCXs along with the memory controller and I/O.

zen ccx.svg
amd zen ccx.png


zen ccx voltage.png
  • RDL - Redistribution layer
  • LDOs - Regulate RVDD to create VDD per core
  • RVDD - Ungated supply
  • VDD - Gated core supply
  • VDDM - L2/L3 SRAM supply

Die

Core

Fabricated on a 14 nm process, using 12 metal layers.

Core

  • Area 7 mm²
  • L2 512 KiB; 1.5 mm²/core

400px

CCX

  • Area 44 mm²
  • L3 8 MiB; 16 mm²
  • 1,400,000,000 transistors

amd zen ccx.png

Octa-Core Die

  • 14 nm process
  • 12 metal layers
  • 2,000 meters of signals
  • 4,800,000,000 transistors
  • ~195 mm²

amd zen octa-core die shot.png

Sockets/Platform

All Zen-based microprocessors utilizes AMD's Socket AM4, a unified socket infrastructure.

Socket AM4 Platform [Edit]
Segment Chipset USB SATA SATAe PCIe RAID Dual PCIe Overclocking
3.1 G1 3.1 G2 2.0
500-series (Zen+, Zen 2, Zen 3)
Mainstream B550 2 6 6 8 + 4x NVME 0 16x Gen4 0,1,10
Enthusiast X570 0 8 4 14 + 4x NVME 0 16x Gen4 0,1,10
400-series (Zen+)
Mainstream B450 2 2 6 6 + 4x NVME 1 6x Gen3 0,1,10
Enthusiast X470 6 2 6 10 + 4x NVME 2 8x Gen3 0,1,10
300-series (Zen)
Small Form Factor A300, B300 4 0 0 2 + 2x NVMe 1 4x Gen3 0,1
X300 4 0 0 2 + 2x NVMe 1 4x Gen3 0,1
Entry-level A320 6 1 6 4 + 2x NVMe 2 4x Gen2 0,1,10
Mainstream B350 6 2 6 4 + 2x NVMe 2 6x Gen2 0,1,10
Enthusiast X370 6 2 6 6 + 2x NVMe 2 8x Gen2 0,1,10

All Zen Chips

... further results
 List of all Zen-based Processors
 ProcessorFeatures
ModelPriceProcessLaunchedFamilyCoreCTL3$L2$L1$FreqTurboTDPMax MemSMTAMD-VXFR
200GE$ 55.00
€ 49.50
£ 44.55
¥ 5,683.15
14 nm
0.014 μm
1.4e-5 mm
6 September 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
220GE$ 65.00
€ 58.50
£ 52.65
¥ 6,716.45
14 nm
0.014 μm
1.4e-5 mm
21 December 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.4 GHz
3,400 MHz
3,400,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
240GE$ 75.00
€ 67.50
£ 60.75
¥ 7,749.75
14 nm
0.014 μm
1.4e-5 mm
21 December 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
3000G$ 49.00
€ 44.10
£ 39.69
¥ 5,063.17
14 nm
0.014 μm
1.4e-5 mm
20 November 2019AthlonDali Raven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
300U14 nm
0.014 μm
1.4e-5 mm
6 January 2019AthlonPicasso244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
3150U14 nm
0.014 μm
1.4e-5 mm
6 January 2020Athlon GoldDali244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
PRO 200GE14 nm
0.014 μm
1.4e-5 mm
6 September 2018AthlonRaven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
3050U14 nm
0.014 μm
1.4e-5 mm
6 January 2020Athlon SilverDali224 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.3 GHz
2,300 MHz
2,300,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
7251$ 574.00
€ 516.60
£ 464.94
¥ 59,311.42
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples81632 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.1 GHz
2,100 MHz
2,100,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
120 W
120,000 mW
0.161 hp
0.12 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
726114 nm
0.014 μm
1.4e-5 mm
14 June 2018EPYCNaples81664 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7281$ 650.00
€ 585.00
£ 526.50
¥ 67,164.50
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.1 GHz
2,100 MHz
2,100,000 kHz
2.7 GHz
2,700 MHz
2,700,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7301$ 825.00
€ 742.50
£ 668.25
¥ 85,247.25
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
2.7 GHz
2,700 MHz
2,700,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7351$ 1,100.00
€ 990.00
£ 891.00
¥ 113,663.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7351P$ 750.00
€ 675.00
£ 607.50
¥ 77,497.50
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.4 GHz
2,400 MHz
2,400,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7371$ 1,550.00
€ 1,395.00
£ 1,255.50
¥ 160,161.50
14 nm
0.014 μm
1.4e-5 mm
2019EPYCNaples163264 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
3.1 GHz
3,100 MHz
3,100,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
200 W
200,000 mW
0.268 hp
0.2 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7401$ 1,850.00
€ 1,665.00
£ 1,498.50
¥ 191,160.50
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples244864 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
12 MiB
12,288 KiB
12,582,912 B
0.0117 GiB
2,304 KiB
2,359,296 B
2.25 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7401P$ 1,075.00
€ 967.50
£ 870.75
¥ 111,079.75
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples244864 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
12 MiB
12,288 KiB
12,582,912 B
0.0117 GiB
2,304 KiB
2,359,296 B
2.25 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7451$ 2,400.00
€ 2,160.00
£ 1,944.00
¥ 247,992.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples244864 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
12 MiB
12,288 KiB
12,582,912 B
0.0117 GiB
2,304 KiB
2,359,296 B
2.25 MiB
2.3 GHz
2,300 MHz
2,300,000 kHz
3.2 GHz
3,200 MHz
3,200,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7501$ 3,400.00
€ 3,060.00
£ 2,754.00
¥ 351,322.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
155 W
155,000 mW
0.208 hp
0.155 kW
170 W
170,000 mW
0.228 hp
0.17 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7551$ 3,400.00
€ 3,060.00
£ 2,754.00
¥ 351,322.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7551P$ 2,100.00
€ 1,890.00
£ 1,701.00
¥ 216,993.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
7601$ 4,200.00
€ 3,780.00
£ 3,402.00
¥ 433,986.00
14 nm
0.014 μm
1.4e-5 mm
20 June 2017EPYCNaples326464 MiB
65,536 KiB
67,108,864 B
0.0625 GiB
16 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3,072 KiB
3,145,728 B
3 MiB
2.2 GHz
2,200 MHz
2,200,000 kHz
3.2 GHz
3,200 MHz
3,200,000 kHz
180 W
180,000 mW
0.241 hp
0.18 kW
2,048 GiB
2,097,152 MiB
2,147,483,648 KiB
2,199,023,255,552 B
2 TiB
310114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.1 GHz
2,100 MHz
2,100,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
315114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl4816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2.7 GHz
2,700 MHz
2,700,000 kHz
2.9 GHz
2,900 MHz
2,900,000 kHz
45 W
45,000 mW
0.0603 hp
0.045 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
320114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl8816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
1.5 GHz
1,500 MHz
1,500,000 kHz
3.1 GHz
3,100 MHz
3,100,000 kHz
30 W
30,000 mW
0.0402 hp
0.03 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
3251$ 315.00
€ 283.50
£ 255.15
¥ 32,548.95
14 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
3.1 GHz
3,100 MHz
3,100,000 kHz
55 W
55,000 mW
0.0738 hp
0.055 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
325514 nm
0.014 μm
1.4e-5 mm
EPYC EmbeddedSnowy Owl81616 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
4 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
768 KiB
786,432 B
0.75 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
3.1 GHz
3,100 MHz
3,100,000 kHz
55 W
55,000 mW
0.0738 hp
0.055 kW
512 GiB
524,288 MiB
536,870,912 KiB
549,755,813,888 B
0.5 TiB
3301$ 450.00
€ 405.00
£ 364.50
¥ 46,498.50
14 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl121232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
6 MiB
6,144 KiB
6,291,456 B
0.00586 GiB
1,152 KiB
1,179,648 B
1.125 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
335114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl122432 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
6 MiB
6,144 KiB
6,291,456 B
0.00586 GiB
1,152 KiB
1,179,648 B
1.125 MiB
1.9 GHz
1,900 MHz
1,900,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
80 W
80,000 mW
0.107 hp
0.08 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
340114 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl161632 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
1.85 GHz
1,850 MHz
1,850,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
85 W
85,000 mW
0.114 hp
0.085 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
3451$ 880.00
€ 792.00
£ 712.80
¥ 90,930.40
14 nm
0.014 μm
1.4e-5 mm
21 February 2018EPYC EmbeddedSnowy Owl163232 MiB
32,768 KiB
33,554,432 B
0.0313 GiB
8 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
1,536 KiB
1,572,864 B
1.5 MiB
2.15 GHz
2,150 MHz
2,150,000 kHz
3 GHz
3,000 MHz
3,000,000 kHz
100 W
100,000 mW
0.134 hp
0.1 kW
1,024 GiB
1,048,576 MiB
1,073,741,824 KiB
1,099,511,627,776 B
1 TiB
FireFlight3 August 2018484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3 GHz
3,000 MHz
3,000,000 kHz
8 GiB
8,192 MiB
8,388,608 KiB
8,589,934,592 B
0.00781 TiB
1200$ 109.00
€ 98.10
£ 88.29
¥ 11,262.97
14 nm
0.014 μm
1.4e-5 mm
27 July 2017Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.1 GHz
3,100 MHz
3,100,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1300X$ 129.00
€ 116.10
£ 104.49
¥ 13,329.57
14 nm
0.014 μm
1.4e-5 mm
27 July 2017Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2200G$ 99.00
€ 89.10
£ 80.19
¥ 10,229.67
14 nm
0.014 μm
1.4e-5 mm
12 February 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2200GE14 nm
0.014 μm
1.4e-5 mm
19 April 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2200U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 3Raven Ridge244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.5 GHz
2,500 MHz
2,500,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
2300U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
3250U14 nm
0.014 μm
1.4e-5 mm
6 January 2020Ryzen 3Dali244 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
1 MiB
1,024 KiB
1,048,576 B
9.765625e-4 GiB
192 KiB
196,608 B
0.188 MiB
2.6 GHz
2,600 MHz
2,600,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
PRO 120014 nm
0.014 μm
1.4e-5 mm
Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.1 GHz
3,100 MHz
3,100,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 130014 nm
0.014 μm
1.4e-5 mm
Ryzen 3Summit Ridge448 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2200G14 nm
0.014 μm
1.4e-5 mm
10 May 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2200GE14 nm
0.014 μm
1.4e-5 mm
10 May 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
PRO 2300U14 nm
0.014 μm
1.4e-5 mm
8 January 2018Ryzen 3Raven Ridge444 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
2 GHz
2,000 MHz
2,000,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
15 W
15,000 mW
0.0201 hp
0.015 kW
32 GiB
32,768 MiB
33,554,432 KiB
34,359,738,368 B
0.0313 TiB
1400$ 169.00
€ 152.10
£ 136.89
¥ 17,462.77
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge488 MiB
8,192 KiB
8,388,608 B
0.00781 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.4 GHz
3,400 MHz
3,400,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1500X$ 189.00
€ 170.10
£ 153.09
¥ 19,529.37
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge4816 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.5 GHz
3,500 MHz
3,500,000 kHz
3.7 GHz
3,700 MHz
3,700,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1600$ 219.00
€ 197.10
£ 177.39
¥ 22,629.27
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge61216 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3 MiB
3,072 KiB
3,145,728 B
0.00293 GiB
576 KiB
589,824 B
0.563 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.6 GHz
3,600 MHz
3,600,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
1600X$ 249.00
€ 224.10
£ 201.69
¥ 25,729.17
14 nm
0.014 μm
1.4e-5 mm
11 April 2017Ryzen 5Summit Ridge61216 MiB
16,384 KiB
16,777,216 B
0.0156 GiB
3 MiB
3,072 KiB
3,145,728 B
0.00293 GiB
576 KiB
589,824 B
0.563 MiB
3.6 GHz
3,600 MHz
3,600,000 kHz
4 GHz
4,000 MHz
4,000,000 kHz
95 W
95,000 mW
0.127 hp
0.095 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2400G$ 169.00
€ 152.10
£ 136.89
¥ 17,462.77
14 nm
0.014 μm
1.4e-5 mm
12 February 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
386 KiB
395,264 B
0.377 MiB
3.6 GHz
3,600 MHz
3,600,000 kHz
3.9 GHz
3,900 MHz
3,900,000 kHz
65 W
65,000 mW
0.0872 hp
0.065 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
2400GE14 nm
0.014 μm
1.4e-5 mm
19 April 2018Ryzen 5Raven Ridge484 MiB
4,096 KiB
4,194,304 B
0.00391 GiB
2 MiB
2,048 KiB
2,097,152 B
0.00195 GiB
384 KiB
393,216 B
0.375 MiB
3.2 GHz
3,200 MHz
3,200,000 kHz
3.8 GHz
3,800 MHz
3,800,000 kHz
35 W
35,000 mW
0.0469 hp
0.035 kW
64 GiB
65,536 MiB
67,108,864 KiB
68,719,476,736 B
0.0625 TiB
Count: 79

Shop

<amazon type="simple-listing1" search-title="AMD Zen Products" search-phrase="AMD Ryzen" />

References

  • Michael Clark, AMD's senior fellow and lead architect, Hot Chips 28
  • Lisa Su, AMD CEO, AMD: New Horizon Live Event
  • Lisa Su, AMD CEO, AMD Annual Meeting of Shareholders Q4 2016
  • Meet the AMD Experts - AMD Monthly Partner Training, January 2017
  • Zen: A Next-Generation High-Performance x86 Core, ISSCC 2017

See also

codenameZen +
core count2 +, 4 +, 6 + and 8 +
designerAMD +
first launchedMarch 2, 2017 +
full page nameamd/microarchitectures/zen +
instance ofmicroarchitecture +
instruction set architecturex86-16 +, x86-32 + and x86-64 +
manufacturerGlobalFoundries +
microarchitecture typeCPU +
nameZen +
pipeline stages (min)7 +
process14 nm (0.014 μm, 1.4e-5 mm) +