(→Codenames) |
|||
Line 97: | Line 97: | ||
*** Improved µOP cache tags | *** Improved µOP cache tags | ||
*** Improved µOP cache | *** Improved µOP cache | ||
− | **** Larger µOP cache (?? | + | **** Larger µOP cache (?? entries, up from 2048) |
*** Increased dispatch bandwidth | *** Increased dispatch bandwidth | ||
** Back-end | ** Back-end |
Revision as of 23:36, 14 May 2019
Edit Values | |
Zen 2 µarch | |
General Info | |
Arch Type | CPU |
Designer | AMD |
Manufacturer | GlobalFoundries, TSMC |
Introduction | 2019 |
Process | 14 nm, 7 nm |
Pipeline | |
Type | Superscalar |
OoOE | Yes |
Speculative | Yes |
Reg Renaming | Yes |
Stages | 19 |
Decode | 4-way |
Instructions | |
ISA | x86-64 |
Extensions | MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, RDRND, F16C, BMI, BMI2, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVE, SHA, CLZERO |
Cores | |
Core Names | Rome |
Succession | |
Zen 2 is AMD's successor to Zen+, a 7 nm process microarchitecture for mainstream mobile, desktops, workstations, and servers. Zen 2 will eventually be replaced by Zen 3.
For performance desktop and mobile computing, Zen is branded as Ryzen 3, Ryzen 5, Ryzen 7 and Ryzen Threadripper processors. For servers, Zen is branded as EPYC.
Contents
History
Zen 2 is set to succeed Zen in 2019. In February of 2017 Lisa Su, AMD's CEO announced their future roadmap to include Zen 2 and later Zen 3. On Investor's Day May 2017 Jim Anderson, AMD Senior Vice President, confirmed that Zen 2 is set to utilize 7 nm process. Initial details of Zen 2 and Rome were unveiled during AMD's Next Horizon event on November 6 2018.
Codenames
Core | C/T | Target |
---|---|---|
Rome | Up to 64/128 | High-end server multiprocessors |
Castle Peak | Up to 64/128? | workstation & enthusiasts market processors |
Matisse | Up to 16/32? | Mainstream to high-end desktops & enthusiasts market processors |
River Hawk | Up to 2/4 | Low-power/Cost-sensitive embedded processors with Navi GPU |
Process technology
Zen 2 is fabricated on TSMC's 7 nm process. Some components of the chips (e.g., I/O die) are fabricated on GlobalFoundries 14 nm process.
Compiler support
Compiler | Arch-Specific | Arch-Favorable |
---|---|---|
GCC | -march=znver2 |
-mtune=znver2
|
LLVM | -march=znver2 |
-mtune=znver2
|
- Note: Initial support in GCC 9 and LLVM 9.
Architecture
Zen 2 inherits most of the design from Zen+ but improves the instruction stream bandwidth and floating-point throughput performance.
Key changes from Zen+
- 7 nm process (from 12 nm)
- I/O die still utilizes 14 nm
- Core
- Front-end
- Improved branch prediction unit
- Improved prefetcher
- Improved µOP cache tags
- Improved µOP cache
- Larger µOP cache (?? entries, up from 2048)
- Increased dispatch bandwidth
- Improved branch prediction unit
- Back-end
- Increased retire bandwidth (??-wide, up from 8-wide)
- FPU
- 2x wider datapath (256-bit, up from 128-bit)
- 2x wider EUs (256-bit FMAs, up from 128-bit FMAs)
- 2x wider LSU (2x256-bit L/S, up from 128-bit)
- Front-end
- Security
- In-silicon Spectre enhancements
- Increase number of keys/VMs supported
- I/O
- PCIe 4.0 (from 3.0)
- Infinity Fabric 2
- 2.3x transfer rate per link (25 GT/s, up from ~10.6 GT/s)
This list is incomplete; you can help by expanding it.
New instructions
Zen 2 introduced a number of new x86 instructions:
Block Diagram
Individual Core
This section is empty; you can help add the missing info by editing this page. |
Memory Hierarchy
This section is empty; you can help add the missing info by editing this page. |
Core
Zen 2 largely builds on Zen. Most of the fine details have not been revealed by AMD yet.
Front End
In order to feed the backend, which has been widened to support 256-bit operation, the front-end throughput was improved. AMD reported that the branch prediction unit has been reworked. This includes improvements to the prefetcher and various undisclosed optimizations to the instruction cache. The µOP cache was also tweaked including changes to the µOP cache tags and the µOP cache itself which has been enlarged to improve the instruction stream throughput.
Execution Engine
AMD stated that both the dispatch bandwidth and the retire bandwidth has been increased.
Floating Point
The floating-point unit underwent major modifications in Zen 2. In Zen, AVX2 256 bit single and double precision vector floating-point data types were supported through the use of two 128 bit micro-ops per instruction. Likewise, the floating-point load and store operations were 128 bits wide. In Zen 2, the datapath and the execution units were widened to 256 bits, doubling the vector throughput of the core.
With two 256-bit FMAs, Zen 2 is capable of 16 FLOPs/cycle.
Rome
Rome is codename for AMD's server chip based on the Zen 2 core. Like prior generation (Naples), Rome utilizes a chiplet multi-chip package design. Each chip comprises of nine dies - one centralized I/O die and eight compute dies. The compute dies are fabricated on TSMC's 7 nm process in order to take advantage of the lower power and higher density. On the other hand, the I/O makes use of GlobalFoundries mature 14 nm process.
The centralized I/O die incorporates eight Infinity Fabric links, 128 PCIe Gen 4 lanes, and eight DDR4 memory channels. The full capabilities of the I/O have not been disclosed yet. Attached to the I/O die are eight compute dies - each with eight Zen 2 core - for a total of 64 cores and 128 threads per chip.
Bibliography
- AMD 'Tech Day', February 22, 2017
- AMD 2017 Financial Analyst Day, May 16, 2017
- AMD GCC 9 znver2 enablement patch
- AMD 'Next Horizon', November 6, 2018
See Also
- Intel Ice Lake
codename | Zen 2 + |
core count | 4 +, 6 +, 8 +, 12 +, 16 +, 24 +, 32 + and 64 + |
designer | AMD + |
first launched | July 2019 + |
full page name | amd/microarchitectures/zen 2 + |
instance of | microarchitecture + |
instruction set architecture | x86-64 + |
manufacturer | TSMC + and GlobalFoundries + |
microarchitecture type | CPU + |
name | Zen 2 + |
pipeline stages | 19 + |