From WikiChip
Editing intel/microarchitectures/skylake (client)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 582: Line 582:
 
Skylake's memory subsystem is in charge of the loads and store requests and ordering. Since {{\\|Haswell}}, it's possible to sustain two memory reads (on ports 2 and 3) and one memory write (on port 4) each cycle. Each memory operation can be of any register size up to 256 bits. Skylake memory subsystem has been improved. The store buffer has been increased by 42 entries from {{\\|Broadwell}} to 56 for a total of 128 simultaneous memory operations in-flight or roughly 60% of all µOPs. Special care was taken to reduce the penalty for page-split loads; previously scenarios involving page-split loads were thought to be rarer than they actually are. This was addressed in Skylake with page-split loads are now made equal to other splits loads. Expect page split load penalty down to 5 cycles from 100 cycles in {{\\|Broadwell}}. The average latency to forward a load to store has also been improved and stores that miss in the L1$ generate L2$ requests to the next level cache much earlier in Skylake than before.
 
Skylake's memory subsystem is in charge of the loads and store requests and ordering. Since {{\\|Haswell}}, it's possible to sustain two memory reads (on ports 2 and 3) and one memory write (on port 4) each cycle. Each memory operation can be of any register size up to 256 bits. Skylake memory subsystem has been improved. The store buffer has been increased by 42 entries from {{\\|Broadwell}} to 56 for a total of 128 simultaneous memory operations in-flight or roughly 60% of all µOPs. Special care was taken to reduce the penalty for page-split loads; previously scenarios involving page-split loads were thought to be rarer than they actually are. This was addressed in Skylake with page-split loads are now made equal to other splits loads. Expect page split load penalty down to 5 cycles from 100 cycles in {{\\|Broadwell}}. The average latency to forward a load to store has also been improved and stores that miss in the L1$ generate L2$ requests to the next level cache much earlier in Skylake than before.
  
The L2 to L1 bandwidth in Skylake is the same as {{\\|Haswell}} at 64 bytes per cycle in either direction. Note that one operation can be done each cycle; i.e., the L1 can either receive data from the L2 or send data to the Load/Store buffers each cycle, but not both. Latency from L2$ to L3$ has also been decreased from 4 cycles/line to 2 cycles/line. The bandwidth from the level 2 cache to the shared level 3 is 32 bytes per cycle.
+
The L2 to L1 bandwidth in Skylake is the same as {{\\|Haswell}} at 64 bytes per cycle in either direction. Note that one operation can be done each cycle; i.e., the L1 can either receive data from the L1 or send data to the Load/Store buffers each cycle, but not both. Latency from L2$ to L3$ has also been decreased from 4 cycles/line to 2 cycles/line. The bandwidth from the level 2 cache to the shared level 3 is 32 bytes per cycle.
  
 
=== eDRAM architectural changes ===
 
=== eDRAM architectural changes ===

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameSkylake (client) +
core count2 + and 4 +
designerIntel +
first launchedAugust 5, 2015 +
full page nameintel/microarchitectures/skylake (client) +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerIntel +
microarchitecture typeCPU +
nameSkylake (client) +
pipeline stages (max)19 +
pipeline stages (min)14 +
process14 nm (0.014 μm, 1.4e-5 mm) +