From WikiChip
Editing intel/microarchitectures/ice lake (client)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 86: Line 86:
 
| <s>{{intel|Ice Lake S|l=core}}</s>? || <s>ICL-S</s> || <s>Performance-optimized lifestyle</s> || || <s>Desktop performance to value, AiOs, and minis</s>
 
| <s>{{intel|Ice Lake S|l=core}}</s>? || <s>ICL-S</s> || <s>Performance-optimized lifestyle</s> || || <s>Desktop performance to value, AiOs, and minis</s>
 
|}
 
|}
 
== Lead ==
 
* '''Ophir Edlis''' - Senior Principal Engineer & Lead Architect Ice Lake SoC
 
  
 
== Process Technology==
 
== Process Technology==
{{main|10_nm_lithography_process#Intel|l1=Intel's 10-nanometer process}}
+
{{see also|intel/microarchitectures/cannon lake#Process_Technology|l1=Cannon Lake § Process Technology}}
Prolong delays with Intel's 10-nanometer process due to yield issues meant the terminology around that process was changed over time. Ice Lake is fabricated on Intel's second-generation enhanced [[10 nm process]]. Originally the process was meant to succeed first-generation which was used for {{\\|Cannon Lake}}. Unfortunately due to yield and performance reasons, Intel re-designated 2nd-generation as 1st-generation (ignoring {{\\|Cannon Lake}}), hence the plain name of "10nm" (without any pluses).
+
Ice Lake is fabricated on Intel's second-generation enhanced [[10 nm process]] called "10 nm+". Versus the first generation 10nm which was used for {{\\|Cannon Lake}}, 10nm+ features higher performance through higher drive current for the same power envelope. Intel says that Ice Lake is built on their learnings from their Cannon Lake products which were largely treated as a learning vehicle. Between Cannon Lake and Ice Lake, a number of changes were made in order to improve the process for their products. One such change was the addition of an extra metal layer (originally said to be 12, is now presumably 13 on Ice Lake) in order to improve the power delivery of the chip. Additionally, they have improved the threshold voltage of the transistors as well as their MIM cap among other changes.
  
Intel says that Ice Lake is built on their learnings from their Cannon Lake chip which were largely treated as a learning vehicle. Between Cannon Lake and Ice Lake, a number of changes were made in order to improve the process for their products. One such change was the addition of an extra metal layer (originally said to be 12, is now presumably 13 on Ice Lake) in order to improve the power delivery of the chip. Additionally, they have improved the threshold voltage of the transistors as well as their MIM cap among other changes.
+
[[File:intels 10+ and 10++.png|750px]]
  
 
{{clear}}
 
{{clear}}

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

This page is a member of 1 hidden category:

codenameIce Lake (client) +
core count2 + and 4 +
designerIntel +
first launchedMay 27, 2019 +
full page nameintel/microarchitectures/ice lake (client) +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerIntel +
microarchitecture typeCPU +
nameIce Lake (client) +
pipeline stages (max)19 +
pipeline stages (min)14 +
process10 nm (0.01 μm, 1.0e-5 mm) +