From WikiChip
Editing amd/microarchitectures/zen

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 451: Line 451:
 
==== Execution Engine ====
 
==== Execution Engine ====
 
[[File:amd zen hc28 integer.png|350px|right]]
 
[[File:amd zen hc28 integer.png|350px|right]]
As mentioned early, Zen returns to a fully partitioned core design with a private L2 cache and private [[FP]]/[[SIMD]] units. Previously those units shared resources spanning two cores. Zen's Execution Engine (Back-End) is split into two major sections: [[integer]] & memory operations and [[floating point]] operations. The two sections are decoupled with independent [[register renaming|renaming]], [[schedulers]], [[queues]], and execution units. Both Integer and FP sections have access to the [[Retire Queue]] which is 192 entries (96 per thread) and can [[retire]] 8 instructions per cycle (independent of either Integer or FP). The wider-than-dispatch retire allows Zen to catch up and free the resources much quicker (previous architectures saw bottleneck at this point in situations where an older op is stalling causing a reduction in performance due to retire needing to catch up to the front of the machine).
+
As mentioned early, Zen returns to a fully partitioned core design with a private L2 cache and private [[FP]]/[[SIMD]] units. Previously those units shared resources spanning two cores. Zen's Execution Engine (Back-End) is split into two major sections: [[integer]] & memory operations and [[floating point]] operations. The two sections are decoupled with independent [[register renaming|renaming]], [[schedulers]], [[queues]], and execution units. Both Integer and FP sections have access to the [[Retire Queue]] which is 192 entries and can [[retire]] 8 instructions per cycle (independent of either Integer or FP). The wider-than-dispatch retire allows Zen to catch up and free the resources much quicker (previous architectures saw bottleneck at this point in situations where an older op is stalling causing a reduction in performance due to retire needing to catch up to the front of the machine).
  
 
Because the two regions are entirely divided, a penalty of one cycle latency will incur for operands that crosses boundaries; for example, if an [[operand]] of an integer arithmetic µOP depends on the result of a floating point µOP operation. This applies both ways. This is a similar to the inter-[[Common Data Bus]] exchanges in Intel's designs (e.g., {{intel|Skylake|l=arch}}) which incur a delay of 1 to 2 cycles when dependent operands cross domains.
 
Because the two regions are entirely divided, a penalty of one cycle latency will incur for operands that crosses boundaries; for example, if an [[operand]] of an integer arithmetic µOP depends on the result of a floating point µOP operation. This applies both ways. This is a similar to the inter-[[Common Data Bus]] exchanges in Intel's designs (e.g., {{intel|Skylake|l=arch}}) which incur a delay of 1 to 2 cycles when dependent operands cross domains.

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

This page is a member of 1 hidden category:

codenameZen +
core count4 +, 6 +, 8 +, 16 +, 24 +, 32 + and 12 +
designerAMD +
first launchedMarch 2, 2017 +
full page nameamd/microarchitectures/zen +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerGlobalFoundries +
microarchitecture typeCPU +
nameZen +
pipeline stages19 +
process14 nm (0.014 μm, 1.4e-5 mm) +