From WikiChip
Editing amd/microarchitectures/zen

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 420: Line 420:
 
Instructions are fetched from the [[L2 cache]] at the rate of 32B/cycle. Zen features an asymmetric [[level 1 cache]] with a 64 [[KiB]] [[instruction cache]], double the size of the L1 data cache. Depending on the branch prediction decision instructions may be fetched from the instruction cache or from the [[µOPs]] cache in which eliminates the need for performing the costly instruction decoding.
 
Instructions are fetched from the [[L2 cache]] at the rate of 32B/cycle. Zen features an asymmetric [[level 1 cache]] with a 64 [[KiB]] [[instruction cache]], double the size of the L1 data cache. Depending on the branch prediction decision instructions may be fetched from the instruction cache or from the [[µOPs]] cache in which eliminates the need for performing the costly instruction decoding.
 
[[File:amd zen hc28 decode.png|left|300px]]
 
[[File:amd zen hc28 decode.png|left|300px]]
On the traditional side of decode, instructions are fetched from the L1$ at 32B aligned bytes per cycle and go to the instruction byte buffer and through the pick stage to the decode. Actual tests show the effective throughput is generally much lower (around 16-20 bytes). This is slightly higher than the fetch window in [[Intel]]'s {{intel|Skylake}} which has a 16-byte fetch window. The size of the instruction byte buffer is of 20 entries (10 entries per thread in SMT).
+
On the traditional side of decode, instructions are fetched from the L1$ at 32B aligned bytes per cycle and go to the instruction byte buffer and through the pick stage to the decode. Actual tests show the effective throughput is generally much lower (around 16-20 bytes). This is slightly higher than the fetch window in [[Intel]]'s {{intel|Skylake}} which has a 16-byte fetch window. The size of the instruction byte buffer was not given by AMD but it's expected to be larger than the 16-entry structure found in {{amd|microarchitectures|their previous}} architecture.
  
 
===== µOP cache & x86 tax =====
 
===== µOP cache & x86 tax =====

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

This page is a member of 1 hidden category:

codenameZen +
core count4 +, 6 +, 8 +, 16 +, 24 +, 32 + and 12 +
designerAMD +
first launchedMarch 2, 2017 +
full page nameamd/microarchitectures/zen +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerGlobalFoundries +
microarchitecture typeCPU +
nameZen +
pipeline stages19 +
process14 nm (0.014 μm, 1.4e-5 mm) +