From WikiChip
Difference between revisions of "boolean algebra/functional completeness"
m (→Proving Completeness) |
|||
Line 7: | Line 7: | ||
* '''{''' [[AND]], [[NOT]] '''}''', '''{''' [[OR]], [[NOT]] '''}''', '''{''' [[XOR]], [[AND]] '''}''', '''{''' [[MAJ]], [[NOT]] '''}''' | * '''{''' [[AND]], [[NOT]] '''}''', '''{''' [[OR]], [[NOT]] '''}''', '''{''' [[XOR]], [[AND]] '''}''', '''{''' [[MAJ]], [[NOT]] '''}''' | ||
− | == | + | == Determining Completeness == |
{| class="wikitable" style="float: right;" | {| class="wikitable" style="float: right;" | ||
! Func !! Monotone !! Self-dual !! Linear !! 0-preserving !! 1-preserving | ! Func !! Monotone !! Self-dual !! Linear !! 0-preserving !! 1-preserving |
Revision as of 17:41, 20 November 2015
A set of logic operations is functionally complete in Boolean algebra provided every propositional function can be expressed entirely in terms of operations in the set - i.e. by combining the various logic operations in a set one could create every truth table. Two notable sets are { NAND } and { NOR }.
Examples
The following are some examples of functionally complete sets:
Determining Completeness
Func | Monotone | Self-dual | Linear | 0-preserving | 1-preserving |
---|---|---|---|---|---|
NOT | ✘ | ✔ | ✔ | ✘ | ✘ |
AND | ✔ | ✘ | ✘ | ✔ | ✔ |
OR | ✔ | ✘ | ✘ | ✔ | ✔ |
- Given a set of Boolean functions
- Find at least one of each:
- Identify functional completeness.
From the table it can be seen that the following sets are functionally complete: { AND, NOT }, { OR, NOT }, { AND, OR, NOT }.