From WikiChip
Difference between revisions of "boolean algebra/functional completeness"
m |
m |
||
Line 16: | Line 16: | ||
| [[XOR]] || '''✘''' || '''✘''' ||'''✔''' || '''✔''' || '''✘''' | | [[XOR]] || '''✘''' || '''✘''' ||'''✔''' || '''✔''' || '''✘''' | ||
|} | |} | ||
− | A set of logic operations is '''functionally complete''' in [[Boolean algebra]] provided every [[propositional function]] can be expressed entirely in terms of operations in the set - i.e. by combining the various logic operations in a set one could create every truth table. Two notable sets are [[NAND logic|'''{''' NAND '''}''']] and [[NOR logic|'''{''' NOR '''}''']]. Such sets are also called | + | A set of logic operations is '''functionally complete''' in [[Boolean algebra]] provided every [[propositional function]] can be expressed entirely in terms of operations in the set - i.e. by combining the various logic operations in a set one could create every truth table. Two notable sets are [[NAND logic|'''{''' NAND '''}''']] and [[NOR logic|'''{''' NOR '''}''']]. Such sets are also called '''complete''' sets. |
== Examples == | == Examples == |
Revision as of 02:32, 24 November 2015
Logic function classification | |||||
---|---|---|---|---|---|
Func | Monotone Inc | Self-dual | Linear | 0-preserving | 1-preserving |
LOW | ✔ | ✘ | ✔ | ✔ | ✘ |
HIGH | ✔ | ✘ | ✔ | ✘ | ✔ |
NOT | ✘ | ✔ | ✔ | ✘ | ✘ |
AND | ✔ | ✘ | ✘ | ✔ | ✔ |
OR | ✔ | ✘ | ✘ | ✔ | ✔ |
XOR | ✘ | ✘ | ✔ | ✔ | ✘ |
A set of logic operations is functionally complete in Boolean algebra provided every propositional function can be expressed entirely in terms of operations in the set - i.e. by combining the various logic operations in a set one could create every truth table. Two notable sets are { NAND } and { NOR }. Such sets are also called complete sets.
Examples
The following are some examples of functionally complete sets:
Determining Completeness
- Given a set of Boolean functions
- Find at least one of each:
- Identify functional completeness.
From the table it can be seen that the following sets are functionally complete: { AND, NOT }, { OR, NOT }, { AND, OR, NOT }.