From WikiChip
Difference between revisions of "boolean algebra/functional completeness"
< boolean algebra

(init)
 
Line 7: Line 7:
 
* '''{''' [[AND]], [[NOT]] '''}''', '''{''' [[OR]], [[NOT]] '''}''', '''{''' [[XOR]], [[AND]] '''}''', '''{''' [[MAJ]], [[NOT]] '''}'''
 
* '''{''' [[AND]], [[NOT]] '''}''', '''{''' [[OR]], [[NOT]] '''}''', '''{''' [[XOR]], [[AND]] '''}''', '''{''' [[MAJ]], [[NOT]] '''}'''
  
 +
== Proving Completeness ==
 +
{| class="wikitable" style="float: right;"
 +
! Func    !! Monotone !! Self-dual !! Linear  !! 0-preserving !! 1-preserving
 +
|-
 +
| [[NOT]]  || '''✘'''  || '''✔'''  || '''✔''' || '''✘'''      || '''✘'''
 +
|-
 +
| [[AND]]  || '''✔'''  || '''✘'''  || '''✘''' || '''✔'''      || '''✔'''
 +
|-
 +
| [[OR]]  || '''✔'''  || '''✘'''  ||'''✘'''  || '''✔'''      || '''✔'''
 +
|}
 +
* Given a set of Boolean functions
 +
* Find at least one of each:
 +
*# [[monotone Boolean function]]
 +
*# [[self-dual Boolean function]]
 +
*# [[linear boolean function]]
 +
*# [[0-preserving Boolean function]]
 +
*# [[1-preserving Boolean function]]
 +
* Identify functional completeness.
  
{{stub}}
+
From the table it can be seen that the following sets are functionally complete: '''{''' [[AND]], [[NOT]] '''}''', '''{''' [[OR]], [[NOT]] '''}''', '''{''' [[AND]], [[OR]], [[NOT]] '''}'''.

Revision as of 17:35, 20 November 2015

A set of logic operations is functionally complete in Boolean algebra provided every propositional function can be expressed entirely in terms of operations in the set - i.e. by combining the various logic operations in a set one could create every truth table. Two notable sets are { NAND } and { NOR }.

Examples

The following are some examples of functionally complete sets:

Proving Completeness

Func Monotone Self-dual Linear 0-preserving 1-preserving
NOT
AND
OR

From the table it can be seen that the following sets are functionally complete: { AND, NOT }, { OR, NOT }, { AND, OR, NOT }.