From WikiChip
Editing intel/microarchitectures/skylake (client)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 375: Line 375:
 
* '''Note:''' STLB is incorrectly reported as "6-way" by CPUID leaf 2 (EAX=02H). Skylake erratum SKL148 recommends software to simply ignore that value.
 
* '''Note:''' STLB is incorrectly reported as "6-way" by CPUID leaf 2 (EAX=02H). Skylake erratum SKL148 recommends software to simply ignore that value.
  
== Overview ==
+
=== Overview ===
 
Skylake inherits much of the {{\\|Core}} design philosophy which was enhanced significantly over the past number of architectures. Skylake, like its predecessor {{\\|Broadwell}}, is also a dual-threaded and complex [[out-of-order]] [[pipeline]]. Skylake which builds on Broadwell incorporates large number of enhancements that has improved performance and efficiency in order to cover a large spectrum of devices from ultra-low power to high-performance computing. Additionally, a large number of improvements were done to the [[integrated graphics]] and multimedia capabilities as well as a new set of security technologies were introduced.
 
Skylake inherits much of the {{\\|Core}} design philosophy which was enhanced significantly over the past number of architectures. Skylake, like its predecessor {{\\|Broadwell}}, is also a dual-threaded and complex [[out-of-order]] [[pipeline]]. Skylake which builds on Broadwell incorporates large number of enhancements that has improved performance and efficiency in order to cover a large spectrum of devices from ultra-low power to high-performance computing. Additionally, a large number of improvements were done to the [[integrated graphics]] and multimedia capabilities as well as a new set of security technologies were introduced.
  
=== Design goals & new goals ===
+
==== Design goals & new goals ====
 
[[File:skylake tdp-form factor range.png|right|500px]]
 
[[File:skylake tdp-form factor range.png|right|500px]]
 
Skylake tries to address 4 major design goals: Scalability, Performance, Power, and Media & Graphics. Skylake started out as a "traditional client product" when initial design goals and development started back in 2010. At that time, Skylake was expected to cover products ranging from thin-and-lights all the way up to desktops. This translated to roughly 3x TDP scale and 2x form factor between the smallest and biggest models. With the introduction of Ultralight, Skylake design goals were extended to a new class of smaller form factors (down to 15 W). Skylake design goals were later further extended to more mobility segments and even smaller form factors. The final end result is a microarchitecture that now spans 20-fold TDP scale (from 3.5 W all the way to 80 W+) and up to 4-fold form factor between the lowest power model and the highest performance model. Intel claims that Skylake also succeeded in reducing power by 40-60% during important workloads such as video, graphics, and idle power which especially affect models where battery life is absolutely critical.
 
Skylake tries to address 4 major design goals: Scalability, Performance, Power, and Media & Graphics. Skylake started out as a "traditional client product" when initial design goals and development started back in 2010. At that time, Skylake was expected to cover products ranging from thin-and-lights all the way up to desktops. This translated to roughly 3x TDP scale and 2x form factor between the smallest and biggest models. With the introduction of Ultralight, Skylake design goals were extended to a new class of smaller form factors (down to 15 W). Skylake design goals were later further extended to more mobility segments and even smaller form factors. The final end result is a microarchitecture that now spans 20-fold TDP scale (from 3.5 W all the way to 80 W+) and up to 4-fold form factor between the lowest power model and the highest performance model. Intel claims that Skylake also succeeded in reducing power by 40-60% during important workloads such as video, graphics, and idle power which especially affect models where battery life is absolutely critical.
Line 393: Line 393:
 
* New Security technology - Better protection against hardware and software attacks
 
* New Security technology - Better protection against hardware and software attacks
  
=== SoC design ===
+
==== SoC design ====
 
[[File:skylake soc (superset features).png|right|300px]]
 
[[File:skylake soc (superset features).png|right|300px]]
 
The Skylake [[system on a chip]] consists of a five major components: CPU core, [[last level cache|LLC]], Ring interconnect, System agent, and the [[integrated graphics]]. The image shown on the right, presented by Intel at the Intel Developer Forum in 2015, represents a hypothetical model incorporating all available features Skylake has to offer (i.e. [[superset]] of features). Skylake features an improved core (see [[#Pipeline|§ Pipeline]]) with higher performance per watt and higher performance per clock. The number of cores depends on the model, but mainstream mobile models are typically [[dual-core]] while mainstream desktop models are typically [[quad-core]] with dual-core desktop models still offered for value models (e.g. {{intel|Celeron}}). Accompanying the cores is the LCC ([[last level cache]] or [[L3$]] as seen from the CPU perspective). On mainstream parts the LLC consists of 2 MiB for each core with lower amounts for value models. Connecting the cores together is the ring interconnect. The ring extends to the GPU and the system agent as well. Intel further optimized the ring in Skylake for low-power and higher bandwidth.
 
The Skylake [[system on a chip]] consists of a five major components: CPU core, [[last level cache|LLC]], Ring interconnect, System agent, and the [[integrated graphics]]. The image shown on the right, presented by Intel at the Intel Developer Forum in 2015, represents a hypothetical model incorporating all available features Skylake has to offer (i.e. [[superset]] of features). Skylake features an improved core (see [[#Pipeline|§ Pipeline]]) with higher performance per watt and higher performance per clock. The number of cores depends on the model, but mainstream mobile models are typically [[dual-core]] while mainstream desktop models are typically [[quad-core]] with dual-core desktop models still offered for value models (e.g. {{intel|Celeron}}). Accompanying the cores is the LCC ([[last level cache]] or [[L3$]] as seen from the CPU perspective). On mainstream parts the LLC consists of 2 MiB for each core with lower amounts for value models. Connecting the cores together is the ring interconnect. The ring extends to the GPU and the system agent as well. Intel further optimized the ring in Skylake for low-power and higher bandwidth.

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameSkylake (client) +
core count2 + and 4 +
designerIntel +
first launchedAugust 5, 2015 +
full page nameintel/microarchitectures/skylake (client) +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerIntel +
microarchitecture typeCPU +
nameSkylake (client) +
pipeline stages (max)19 +
pipeline stages (min)14 +
process14 nm (0.014 μm, 1.4e-5 mm) +