From WikiChip
Editing nec/microarchitectures/sx-aurora

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 133: Line 133:
  
 
== Mesh interconnect ==
 
== Mesh interconnect ==
All eight cores are interconnected using a 2D mesh network. The designed favored minimal wiring for maximum bandwidth. The SX-Aurora features a 16-layer 2D mesh network that uses [[dimension-ordered routing]] along with virtual channels for requests and replies. As illustrated in the diagram below, the router crossbar points are arranged in a diamond shape in order to minimize distance to the request and reply crossbars in the core. With the SX-Ace, replies to the cores were slightly unbalanced. In the SX-Aurora, the requests crossbars and the reply crossbars, each, have the same bandwidth. With each request being 16B, this works out to around 410 GB/s for each crossbar or 820 GB/s per core. Coming from the cache size, there is a total of 3.05 GB/s of available bandwidth distributed across all eight LLC chunks.
+
{{empty section}}
 
 
 
 
  
 
[[File:sx-aurora 2d 16-layer mesh.svg|900px|center]]
 
[[File:sx-aurora 2d 16-layer mesh.svg|900px|center]]

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)