From WikiChip
Editing macro-operation fusion

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 3: Line 3:
  
 
== Overview & Motivation ==
 
== Overview & Motivation ==
One of the three [[microprocessor performance|performance knobs of a microprocessor]] is the [[instruction count]]. By reducing the number of instructions that must be executed, more work can be done with fewer resources. The idea behind macro-operation fusion is to combine multiple adjacent instructions into a single instruction. A fused instruction typically remains fused throughout its lifetime. Therefore fused instructions can represent more work with fewer bits, free up execution units, tracking information (e.g. in the [[register renaming|rename unit]]), save pipeline bandwidth in all stages from decode to retire, and consequently save power.
+
One of the three [[microprocessor performance|performance knobs of a microprocessor]] is the [[instruction count]]. By reducing the number of instructions that must be executed, more work can be done with lower resource usage. The idea behind macro-operation fusion is to combine multiple adjacent instructions into a single instruction. A fused instruction typically remains fused throughout its lifetime. Therefore fused instructions can represent more work with fewer bits, free up execution units, tracking information (e.g. in the [[register renaming|rename unit]]), save pipeline bandwidth in all stages from decode to retire, and consequently save power.
  
 
A unique aspect of macro-op fusion is that it also helps workloads that are not compiled such as in the case of many [[interpreted programming languages]] (e.g. [[PHP]], the software running WikiChip).
 
A unique aspect of macro-op fusion is that it also helps workloads that are not compiled such as in the case of many [[interpreted programming languages]] (e.g. [[PHP]], the software running WikiChip).

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)