From WikiChip
Editing intel/microarchitectures/gen9.5

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 232: Line 232:
  
 
==== Preemption Granularity ====
 
==== Preemption Granularity ====
Preemption in Gen9 ({{\\|Skylake}}) was improved over Gen8 in a number of ways. Preemption is important for multi-tasking system and especially important for improving responsiveness of operations (i.e. the ability to stop and start operations quickly with minimal latency interruption for the end user). In {{\\|Broadwell}} ({{\\|Gen8}}) Intel added support for the ability to stop operations on object-level for 3D workloads such as on a triangle boundary (i.e. beginning of a triangle, between two triangles, between two lines  or points) and be able to preempt and restore back to those operations. In Gen9 Intel added the ability to stop execution units on an instruction boundary and be able to restore them (previously such preemption was only possible at the boundary of a kernel - i.e. the entire kernel execution must take places before preemption was possible). Gen9 added support for thread-group (complete kernel execution) to mid-thread (instruction boundary) for compute workloads:  
+
Preemption in Gen9 ({{\\|Skylake}}) was improved over Gen8 in a number of way. Preemption is important for multi-tasking system and especially important for improving responsiveness of operations (i.e. the ability to stop and start operations quickly with minimal latency interruption for the end user). In {{\\|Broadwell}} ({{\\|Gen8}}) Intel added support for the ability to stop operations on object-level for 3D workloads such as on a triangle boundary (i.e. beginning of a triangle, between two triangles, between two lines  or points) and be able to preempt and restore back to those operations. In Gen9 Intel added the ability to stop execution units on an instruction boundary and be able to restore them (previously such preemption was only possible at the boundary of a kernel - i.e. the entire kernel execution must take places before preemption was possible). Gen9 added support for thread-group (complete kernel execution) to mid-thread (instruction boundary) for compute workloads:  
  
 
Example of responsiveness (Source: IDF15)
 
Example of responsiveness (Source: IDF15)

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameGen9.5 +
designerIntel +
first launchedAugust 30, 2016 +
full page nameintel/microarchitectures/gen9.5 +
instance ofmicroarchitecture +
manufacturerIntel +
microarchitecture typeGPU +
nameGen9.5 +
process14 nm (0.014 μm, 1.4e-5 mm) +