From WikiChip
Editing arm holdings/microarchitectures/cortex-a76

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 138: Line 138:
 
== Core ==
 
== Core ==
 
[[File:a76 perf claims.png|thumb|right|Cortex-A76 on [[7nm]] compared to the {{\\|Cortex-A75}} on [[10nm]].]]
 
[[File:a76 perf claims.png|thumb|right|Cortex-A76 on [[7nm]] compared to the {{\\|Cortex-A75}} on [[10nm]].]]
The Cortex-A76 succeeds the {{\\|Cortex-A75}}. It is designed to take advantage of the [[7 nm]] node in order to deliver up to 40% higher performance at the same power level (measured at 750 mW/core), or alternatively, up to 50% lower power for the same performance compared to the {{\\|Cortex-A75}} on the [[10 nm]] node. This is achieved through a combination of both microarchitectural improvements as well as [[process technology]] advantages. It's worth noting that the A76 brings higher performance at a slight hit to the area by going wider. On the [[7 nm process]], the Cortex-A76 targets frequencies of 3 GHz and higher.
+
The Cortex-A76 succeeds the {{\\|Cortex-A75}}. It is designed to take advantage of the [[7 nm]] node in order to deliver up to 40% higher performance at the same power level (measured at 750 mW/core), or alternatively, up to 50% lower power for the same performance compared to the {{\\|Cortex-A75}} on the [[10 nm]] node. This is achieved through a combination of both microarchitectural improvements as well as [[process technolgoy]] advantages. It's worth noting that the A76 brings higher performance at a slight hit to the area by going wider. On the [[7 nm process]], the Cortex-A76 targets frequencies of 3 GHz and higher.
  
 
=== Pipeline ===
 
=== Pipeline ===

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameCortex-A76 +
core count1 +, 2 +, 4 +, 6 + and 8 +
designerARM Holdings +
first launchedMay 31, 2018 +
full page namearm holdings/microarchitectures/cortex-a76 +
instance ofmicroarchitecture +
instruction set architectureARMv8.2 +
manufacturerTSMC +
microarchitecture typeCPU +
nameCortex-A76 +
pipeline stages13 +
process12 nm (0.012 μm, 1.2e-5 mm) +, 7 nm (0.007 μm, 7.0e-6 mm) + and 5 nm (0.005 μm, 5.0e-6 mm) +