From WikiChip
Editing 28 nm lithography process

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
 
{{lithography processes}}
 
{{lithography processes}}
The '''28 nanometer (28 nm) lithography process''' is a [[technology node#half node|half-node]] semiconductor manufacturing process used as a stopgap between the [[32 nm lithography process|32 nm]] and [[22 nm lithography process|22 nm]] processes. Commercial [[integrated circuit]] manufacturing using 28 nm process began in 2011. This technology superseded by commercial [[22 nm lithography process|22 nm process]].
+
The '''28 nm lithography process''' is a [[technology node#half node|half-node]] semiconductor manufacturing process used as a stopgap between the [[32 nm lithography process|32 nm]] and [[22 nm lithography process|22 nm]] processes. Commercial [[integrated circuit]] manufacturing using 28 nm process began in 2011. This technology superseded by commercial [[22 nm lithography process|22 nm process]].
  
 
== Industry ==
 
== Industry ==
{{nodes comp
+
 
<!-- TSMC -->
+
=== Samsung ===
| process 1 fab          = [[TSMC]]
+
{| class="wikitable"
| process 1 name        = 28LP, 28HPL, 28HP
+
|-
| process 1 date        = 4Q 2011
+
| || Measurement || Scaling from [[40 nm]]
| process 1 lith        = 193 nm
+
|-
| process 1 immersion    = Yes
+
| Contacted Gate Pitch || 90 nm || 0.70x
| process 1 exposure    = DP
+
|-
| process 1 wafer type  = Bulk
+
| Interconnect Pitch (M1P) || 96 nm || 0.82x
| process 1 wafer size  = 300 mm
+
|-
| process 1 transistor  = Planar
+
| [[SRAM]] bit cell || 0.120 µm<sup>2</sup> || ?x
| process 1 volt        = 1 V, 0.8 V
+
|}
| process 1 layers      = 10
+
 
| process 1 delta from   = [[32 nm]] Δ
+
=== TSMC ===
| process 1 gate len    = 24 nm
+
{| class="wikitable"
| process 1 gate len Δ  = &nbsp;
+
|-
| process 1 cpp          = 117 nm
+
| || Measurement || Notes
| process 1 cpp Δ        = &nbsp;
+
|-
| process 1 mmp          = 90 nm
+
| Contacted Gate Pitch || 117 nm ||
| process 1 mmp Δ        = &nbsp;
+
|-
| process 1 sram hp      = &nbsp;
+
| Interconnect Pitch (M1P) || ? nm ||
| process 1 sram hp Δ    = &nbsp;
+
|-
| process 1 sram hd      = 0.127 µm²
+
| [[SRAM]] bit cell || 0.127 µm<sup>2</sup> || High Density
| process 1 sram hd Δ    = &nbsp;
+
|-
| process 1 sram lv      = 0.155 µm²
+
| [[SRAM]] bit cell || 0.155 µm<sup>2</sup> || Low Voltage
| process 1 sram lv Δ    = &nbsp;
+
|}
| process 1 dram        = &nbsp;
 
| process 1 dram Δ      = &nbsp;
 
<!-- IBM -->
 
| process 2 fab          = [[Common Platform Alliance ]]<info>The '''Common Platform Alliance''' is a joint collaboration between [[IBM]], [[Samsung]], [[GlobalFoundries]], [[Toshiba]], [[NEC]], [[STMicroelectronics]], [[Infineon Technologies]], [[Chartered Semiconductor Manufacturing]], [[Renasas]]</info>
 
| process 2 name        = 28LP, 28LPP, 28SLP
 
| process 2 date        = 2014
 
| process 2 lith        = 193 nm
 
| process 2 immersion    = Yes
 
| process 2 exposure    = DP
 
| process 2 wafer type  = Bulk
 
| process 2 wafer size  = 300 mm
 
| process 2 transistor  = Planar
 
| process 2 volt        = 1 V, 0.85 V
 
| process 2 layers      = 10
 
| process 2 delta from  = [[32 nm]] Δ
 
| process 2 gate len    = 28 nm
 
| process 2 gate len Δ  = &nbsp;
 
| process 2 cpp          = 113.4 nm
 
| process 2 cpp Δ        = &nbsp;
 
| process 2 mmp          = 90 nm
 
| process 2 mmp Δ        = &nbsp;
 
| process 2 sram hp      = 0.152 µm²
 
| process 2 sram hp Δ    = &nbsp;
 
| process 2 sram hd      = 0.120 µm²
 
| process 2 sram hd Δ    = &nbsp;
 
| process 2 sram lv      = 0.197 µm²
 
| process 2 sram lv Δ    = &nbsp;
 
| process 2 dram        = &nbsp;
 
| process 2 dram Δ      = &nbsp;
 
<!-- UMC -->
 
| process 3 fab          = [[UMC]]
 
| process 3 name        = 28HPC, 28HLP, 28HPC+, 28µLP
 
| process 3 date        = 2013
 
| process 3 lith        = 193 nm
 
| process 3 immersion    = Yes
 
| process 3 exposure    = DP
 
| process 3 wafer type  = Bulk
 
| process 3 wafer size  = 300 mm
 
| process 3 transistor  = Planar
 
| process 3 volt        = 0.9 V, 1.05 V, 0.7 V
 
| process 3 layers      = 10
 
| process 3 delta from  = [[40 nm]] Δ
 
| process 3 gate len    = 33 nm
 
| process 3 gate len Δ  = &nbsp;
 
| process 3 cpp          = 120 nm
 
| process 3 cpp Δ        = &nbsp;
 
| process 3 mmp          = 90 nm
 
| process 3 mmp Δ        = &nbsp;
 
| process 3 sram hp      = &nbsp;
 
| process 3 sram hp Δ    = &nbsp;
 
| process 3 sram hd      = 0.124 µm²
 
| process 3 sram hd Δ    = &nbsp;
 
| process 3 sram lv      = &nbsp;
 
| process 3 sram lv Δ    = &nbsp;
 
| process 3 dram        = &nbsp;
 
| process 3 dram Δ      = &nbsp;
 
<!-- SMIC -->
 
| process 4 fab          = [[SMIC]]
 
| process 4 name        = 28PS, 28HK, 28HKC+
 
| process 4 date        = 4Q 2013
 
| process 4 lith        = &nbsp;
 
| process 4 immersion    = &nbsp;
 
| process 4 exposure    = &nbsp;
 
| process 4 wafer type  = &nbsp;
 
| process 4 wafer size  = &nbsp;
 
| process 4 transistor  = &nbsp;
 
| process 4 volt        = 1.8 V, 2.5 V
 
| process 4 layers      = &nbsp;
 
| process 4 delta from  = &nbsp;
 
| process 4 gate len    = &nbsp;
 
| process 4 gate len Δ  = &nbsp;
 
| process 4 cpp          = &nbsp;
 
| process 4 cpp Δ        = &nbsp;
 
| process 4 mmp          = &nbsp;
 
| process 4 mmp Δ        = &nbsp;
 
| process 4 sram hp      = &nbsp;
 
| process 4 sram hp Δ    = &nbsp;
 
| process 4 sram hd      = &nbsp;
 
| process 4 sram hd Δ    = &nbsp;
 
| process 4 sram lv      = &nbsp;
 
| process 4 sram lv Δ    = &nbsp;
 
| process 4 dram        = &nbsp;
 
| process 4 dram Δ      = &nbsp;
 
}}
 
  
 
== 28 nm Microprocessors ==
 
== 28 nm Microprocessors ==
 
* AMD
 
* AMD
 
** {{amd|A8}}
 
** {{amd|A8}}
** {{amd|A10}}  
+
** {{amd|A10}}
**A9
+
{{expand list}}
* HiSilicon
+
== 28 nm System on Chips ==
** {{hisil|Kirin}}
+
* Intel
* Intel (Fab'ed by [[TSMC]])
 
 
** {{intel|Atom x3}}
 
** {{intel|Atom x3}}
* MediaTek
 
** {{mediatek|Helio}}
 
* Phytium
 
** {{phytium|FT-1500A}}
 
* PEZY
 
** {{pezy|PEZY-SC}}
 
** {{pezy|PEZY-SCnp}}
 
* Renesas
 
** {{renesas|R-Car}}
 
* Xiaomi
 
** {{xiaomi|Surge}}
 
  
 
{{expand list}}
 
{{expand list}}
 
== 28 nm Microarchitectures ==
 
* AMD
 
** {{amd|Steamroller|l=arch}}
 
** {{amd|Excavator|l=arch}}
 
* ARM Holdings
 
** {{armh|Cortex-A53|l=arch}}
 
* Nervana
 
** {{nervana|Lake Crest|l=arch}}
 
* Movidius
 
** {{movidius|SHAVE v3.0|l=arch}}
 
* Phytium
 
** {{phytium|Xiaomi|l=arch}}
 
** {{phytium|Mars I|l=arch}}
 
* VIA Technologies
 
** {{via|Isaiah II|l=arch}}
 
* Zhaoxin
 
** {{zhaoxin|ZhangJiang|l=arch}}
 
** {{zhaoxin|WuDaoKou|l=arch}}
 
 
{{expand list}}
 
 
== References ==
 
* [[:File:samsung foundry solution 28-32nm.pdf|Samsung foundry solution for 32 & 28 nm]]
 
* Wu, Shien-Yang, et al. "A highly manufacturable 28nm cmos low power platform technology with fully functional 64mb sram using dual/tripe gate oxide process." VLSI Technology, 2009 Symposium on. IEEE, 2009.
 
* Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
 
* Arnaud, F., et al. "Competitive and cost effective high-k based 28nm CMOS technology for low power applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009.
 
* Yuan, J., et al. "Performance elements for 28nm gate length bulk devices with gate first high-k metal gate." Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on. IEEE, 2010.
 
* Liang, C. W., et al. "A 28nm poly/SiON CMOS technology for low-power SoC applications." VLSI Technology (VLSIT), 2011 Symposium on. IEEE, 2011.
 
* James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.
 
 
[[category:lithography]]
 

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)