From WikiChip
Editing nanotube-ram

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
{{title|Nanotube-RAM (NRAM)}}
+
{{title|NRAM (Nanotube-RAM)}}
'''Nanotube-RAM''' ('''NRAM''') is a [[carbon nanotube]]-based [[resistance-change memory|resistance-change]] [[memory-class storage|memory-class storage]] [[random access memory|RAM]]. NRAM is proprietary technology developed by [[Nantero]] licenseable to manufacturers.
+
'''NRAM''' ('''Nanotube-RAM''') is a [[carbon nanotube]]-based [[resistance-change memory|resistance-change]] [[memory-class storage|memory-class storage]] [[random access memory|RAM]]. NRAM is proprietary technology developed by [[Nantero]] licenseable to manufacturers.
  
 
== Overview ==
 
== Overview ==
NRAM uses [[carbon nanotubes]] (CNTs) as the switching medium situated between two electrodes located in the [[BEOL]]. The underlying device and substrate need not matter. It is [[resistance-change memory]] meaning an "off" state is a result of high [[resistance]] while an "on" state is a result of low resistance. The resistance of the [[bit cell]] is determined by the contact arrangement of the stochastic fabric of CNTs. When a sufficient amount of CNTs are touching each other, the overall resistance of the network of disordered CNTs is low, on the order of 100 kΩ. Likewise, when disconnected, the overall resistance of the network is very high, on the order of 1 MΩ. NRAM relies on the [[wikipedia:van der Waals force|van der Waals force]] to keep CNTs bound to each other as well as apart.
+
NRAM uses [[carbon nanotubes]] (CTNs) as the switching medium situated between two electrodes located in the [[BEOL]]. The underlying device and substrate need not matter. It is [[resistance-change memory]] meaning an "off" state is a result of high [[resistance]] while an "on" state is a result of low resistance. The resistance of the [[bit cell]] is determined by the contact arrangement of the stochastic fabric of CNTs. When a sufficient amount of CNTs are touching each other, the overall resistance of the network of disordered CNTs is low, on the order of 100 kΩ. Likewise, when disconnected, the overall resistance of the network is very high, on the order of 1 MΩ. NRAM relies on the [[wikipedia:van der Waals force|van der Waals force]] to keep CNTs bound to each other as well as apart.
  
 
:[[File:nram on-off.png|400px]]
 
:[[File:nram on-off.png|400px]]

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

Template used on this page: