From WikiChip
Editing intel/microarchitectures/skylake (server)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 488: Line 488:
 
=== Organization ===
 
=== Organization ===
 
[[File:skylake (server) half rings.png|right|400px]]
 
[[File:skylake (server) half rings.png|right|400px]]
Each die has a grid of converged mesh stops (CMS). For example, for the XCC die, there are 36 CMSs. As the name implies, the CMS is a block that effectively interfaces between all the various subsystems and the mesh interconnect. The locations of the CMSes for the large core count is shown on the diagram below. It should be pointed that although the CMS appears to be inside the core tiles, most of the mesh is likely routed above the cores in a similar fashion to how Intel has done it with the ring interconnect which was wired above the caches in order reduce the die area.
+
Each die has a grid of CMSs. For example, for the XCC die, there are 36 converged mesh stops (CMS). As the name implies, the CMS is a block that effectively interfaces between all the various subsystems and the mesh interconnect. The locations of the CMSes for the large core count is shown on the diagram below. It should be pointed that although the CMS appears to be inside the core tiles, most of the mesh is likely routed above the cores in a similar fashion to how Intel has done it with the ring interconnect which was wired above the caches in order reduce the die area.
  
  

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameSkylake (server) +
core count4 +, 6 +, 8 +, 10 +, 12 +, 14 +, 16 +, 18 +, 20 +, 22 +, 24 +, 26 + and 28 +
designerIntel +
first launchedMay 4, 2017 +
full page nameintel/microarchitectures/skylake (server) +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerIntel +
microarchitecture typeCPU +
nameSkylake (server) +
pipeline stages (max)19 +
pipeline stages (min)14 +
process14 nm (0.014 μm, 1.4e-5 mm) +