From WikiChip
Editing 3 nm lithography process

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
 
{{lithography processes}}
 
{{lithography processes}}
The '''3 nanometer (3 nm or 30 Å) lithography process''' is a [[technology node]] semiconductor manufacturing process following the [[5 nm lithography process|5 nm process]] node. Commercial [[integrated circuit]] manufacturing using 3 nm process is set to begin some time around 2023.
+
The '''3.5 nanometer (3.5 nm)''' or '''35 Å lithography process''' is a [[technology node|full node]] semiconductor manufacturing process following the [[5 nm lithography process|5 nm process]] node. Commercial [[integrated circuit]] manufacturing using 3.5 nm process is set to begin sometimes around 2024 or 2025. The term "3.5 nm" is simply a commercial name for a generation of a certain size and its technology, as opposed to [[technology node|gate length or half pitch]].
 
 
The term "3 nm" is simply a commercial name for a generation of a certain size and its technology, and '''does not''' represent any geometry of the transistor.
 
  
 
== Industry ==
 
== Industry ==
 +
{{empty section}}
  
{{future information}}
+
== 3.5 nm Microprocessors==
 
 
{{finfet nodes comp
 
<!-- Intel -->
 
| process 1 fab          = [[Intel]]
 
| process 1 name        = P1278 (CPU), P1279? (SoC)
 
| process 1 date        = 2H 2023
 
| process 1 lith        = EUV
 
| process 1 immersion    = &nbsp;
 
| process 1 exposure    = SE
 
| process 1 wafer type  = Bulk
 
| process 1 wafer size  = 300 mm
 
| process 1 transistor  = FinFET
 
| process 1 volt        = &nbsp;
 
| process 1 delta from  = [[5 nm]] Δ
 
| process 1 fin pitch    = &nbsp;
 
| process 1 fin pitch Δ  = &nbsp;
 
| process 1 fin width    = &nbsp;
 
| process 1 fin width Δ  = &nbsp;
 
| process 1 fin height  = &nbsp;
 
| process 1 fin height Δ = &nbsp;
 
| process 1 gate len    = &nbsp;
 
| process 1 gate len Δ  = &nbsp;
 
| process 1 cpp          = &nbsp;
 
| process 1 cpp Δ        = &nbsp;
 
| process 1 mmp          = &nbsp;
 
| process 1 mmp Δ        = &nbsp;
 
| process 1 sram hp      = &nbsp;
 
| process 1 sram hp Δ    = &nbsp;
 
| process 1 sram hd      = &nbsp;
 
| process 1 sram hd Δ    = &nbsp;
 
| process 1 sram lv      = &nbsp;
 
| process 1 sram lv Δ    = &nbsp;
 
| process 1 dram        = &nbsp;
 
| process 1 dram Δ      = &nbsp;
 
<!-- TSMC -->
 
| process 2 fab          = [[TSMC]]
 
| process 2 name        = N3, N3E <info>N3 Enhanced</info>
 
| process 2 date        = 2H 2022
 
| process 2 lith        = EUV
 
| process 2 immersion    = &nbsp;
 
| process 2 exposure    = SE
 
| process 2 wafer type  = Bulk
 
| process 2 wafer size  = 300 mm
 
| process 2 transistor  = FinFET
 
| process 2 volt        = &nbsp;
 
| process 2 delta from  = [[5 nm]] Δ
 
| process 2 fin pitch    = &nbsp;
 
| process 2 fin pitch Δ  = &nbsp;
 
| process 2 fin width    = &nbsp;
 
| process 2 fin width Δ  = &nbsp;
 
| process 2 fin height  = &nbsp;
 
| process 2 fin height Δ = &nbsp;
 
| process 2 gate len    = &nbsp;
 
| process 2 gate len Δ  = &nbsp;
 
| process 2 cpp          = &nbsp;
 
| process 2 cpp Δ        = &nbsp;
 
| process 2 mmp          = &nbsp;
 
| process 2 mmp Δ        = &nbsp;
 
| process 2 sram hp      = &nbsp;
 
| process 2 sram hp Δ    = &nbsp;
 
| process 2 sram hd      = &nbsp;
 
| process 2 sram hd Δ    = &nbsp;
 
| process 2 sram lv      = &nbsp;
 
| process 2 sram lv Δ    = &nbsp;
 
| process 2 dram        = &nbsp;
 
| process 2 dram Δ      = &nbsp;
 
<!-- Samsung -->
 
| process 4 fab          = [[Samsung]]
 
| process 4 name        = 3GAE<info>3nm Gate All Around Early</info>, 3GAP<info>3nm Gate All Around Plus</info>
 
| process 4 date        = &nbsp;
 
| process 4 lith        = EUV
 
| process 4 immersion    = &nbsp;
 
| process 4 exposure    = SE
 
| process 4 wafer type  = Bulk
 
| process 4 wafer size  = 300 mm
 
| process 4 transistor  = GAA
 
| process 4 volt        = &nbsp;
 
| process 4 delta from  = [[5 nm]] Δ
 
| process 4 fin pitch    = -
 
| process 4 fin pitch Δ  =
 
| process 4 fin width    =
 
| process 4 fin width Δ  =
 
| process 4 fin height  =
 
| process 4 fin height Δ =
 
| process 4 gate len    = &nbsp;
 
| process 4 gate len Δ  = &nbsp;
 
| process 4 cpp          = &nbsp;
 
| process 4 cpp Δ        = &nbsp;
 
| process 4 mmp          = &nbsp;
 
| process 4 mmp Δ        = &nbsp;
 
| process 4 sram hp      = &nbsp;
 
| process 4 sram hp Δ    = &nbsp;
 
| process 4 sram hd      = &nbsp;
 
| process 4 sram hd Δ    = &nbsp;
 
| process 4 sram lv      = &nbsp;
 
| process 4 sram lv Δ    = &nbsp;
 
| process 4 dram        = &nbsp;
 
| process 4 dram Δ      = &nbsp;
 
}}
 
==== P1278 ====
 
Intel's 5-nanometer (renamed as Intel 20A) process node is expected to ramp around the 2H2024/2025 timeframe.
 
=== Samsung ===
 
On May 24 2017 Samsung announced they will be switching to a transistor they call ''Multi-Bridge-Channel FET'' (''MBCFET''), an extension of a  [[Gate-all-around]] (GAA) FET. This is planned for somewhere after the 5nm node but the exact timeline or specification is currently unknown.
 
 
 
=== TSMC ===
 
N3 technology will offer up to 70% logic density gain, up to 15% speed improvement at the same power and up to 30% power reduction at the same speed as compared with N5 technology (According to TSMCs website). If this holds true we could see 300+ MT/mm2.
 
 
 
== 3 nm Microprocessors==
 
 
 
 
{{expand list}}
 
{{expand list}}
  
== 3 nm Microarchitectures==
+
== 3.5 nm Microarchitectures==
 
{{expand list}}
 
{{expand list}}
  
== References ==
+
[[Category:Lithography]]
* Kinam Kim, President of Semiconductor Business, announced MBCFET for the node after [[5 nm]], May 24, 2017
 
 
 
[[category:lithography]]
 

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)