Latest revision |
Your text |
Line 3: |
Line 3: |
| | | |
| == Industry == | | == Industry == |
− | TSMC cancelled its planned 32nm node process. Intel's 32 nm process became the first process to introduce the [[self-aligned via patterning]]. | + | TSMC cancelled its planned 32nm node process. |
− | | + | {{scrolling table/top|style=text-align: right; | first=Fab |
− | {{nodes comp | + | |Process Name |
− | <!-- Intel -->
| + | |1st Production |
− | | process 1 fab = [[Intel]]
| + | |Type |
− | | process 1 name = P1268 (CPU) / P1269 (SoC)
| + | |Wafer |
− | | process 1 date = 2009
| + | | |
− | | process 1 lith = 193 nm
| + | |Contacted Gate Pitch |
− | | process 1 immersion = Yes
| + | |Interconnect Pitch (M1P) |
− | | process 1 exposure = DP
| + | |SRAM bit cell |
− | | process 1 wafer type = Bulk
| + | |DRAM bit cell |
− | | process 1 wafer size = 300 mm
| |
− | | process 1 transistor = Planar
| |
− | | process 1 volt = 1 V, 0.75 V
| |
− | | process 1 layers = 9
| |
− | | process 1 delta from = [[45 nm]] Δ
| |
− | | process 1 gate len = 30 nm
| |
− | | process 1 gate len Δ =
| |
− | | process 1 cpp = 112.5 nm
| |
− | | process 1 cpp Δ = 0.63x
| |
− | | process 1 mmp = 112.5 nm
| |
− | | process 1 mmp Δ = 0.70x
| |
− | | process 1 sram hp = 0.199 µm²
| |
− | | process 1 sram hp Δ =
| |
− | | process 1 sram hd = 0.148 µm²
| |
− | | process 1 sram hd Δ =
| |
− | | process 1 sram lv = 0.171 µm²
| |
− | | process 1 sram lv Δ =
| |
− | | process 1 dram =
| |
− | | process 1 dram Δ =
| |
− | <!-- TSMC -->
| |
− | | process 2 fab = [[TSMC]]
| |
− | | process 2 name =
| |
− | | process 2 date =
| |
− | | process 2 lith = 193 nm | |
− | | process 2 immersion = Yes | |
− | | process 2 exposure = DP | |
− | | process 2 wafer type = Bulk | |
− | | process 2 wafer size = 300 mm | |
− | | process 2 transistor = Planar
| |
− | | process 2 volt = 1.1 V
| |
− | | process 2 layers =
| |
− | | process 2 delta from = [[40 nm]] Δ | |
− | | process 2 gate len = 30 nm | |
− | | process 2 gate len Δ =
| |
− | | process 2 cpp = 130 nm
| |
− | | process 2 cpp Δ =
| |
− | | process 2 mmp = 100 nm
| |
− | | process 2 mmp Δ =
| |
− | | process 2 sram hp =
| |
− | | process 2 sram hp Δ =
| |
− | | process 2 sram hd = 0.15 µm²
| |
− | | process 2 sram hd Δ =
| |
− | | process 2 sram lv =
| |
− | | process 2 sram lv Δ =
| |
− | | process 2 dram =
| |
− | | process 2 dram Δ =
| |
− | <!-- IBM -->
| |
− | | process 3 fab = [[Common Platform Alliance]]<info>The Common Platform Alliance 20 nm node was a collaboration between [[IBM]], [[Samsung]], [[Freescale]], [[Toshiba]], [[Chartered Semiconductor Manufacturing]], [[Infineon Technologies ]]</info>
| |
− | | process 3 name =
| |
− | | process 3 date = 2011
| |
− | | process 3 lith = 193 nm
| |
− | | process 3 immersion = Yes
| |
− | | process 3 exposure = DP
| |
− | | process 3 wafer type = Bulk
| |
− | | process 3 wafer size = 300 mm
| |
− | | process 3 transistor = Planar
| |
− | | process 3 volt = 1 V, 0.8 V
| |
− | | process 3 layers = 11
| |
− | | process 3 delta from = [[45 nm]] Δ
| |
− | | process 3 gate len = 30 nm
| |
− | | process 3 gate len Δ =
| |
− | | process 3 cpp = 126 nm
| |
− | | process 3 cpp Δ =
| |
− | | process 3 mmp = 100 nm
| |
− | | process 3 mmp Δ =
| |
− | | process 3 sram hp =
| |
− | | process 3 sram hp Δ =
| |
− | | process 3 sram hd = 0.157 µm²
| |
− | | process 3 sram hd Δ =
| |
− | | process 3 sram lv =
| |
− | | process 3 sram lv Δ =
| |
− | | process 3 dram =
| |
− | | process 3 dram Δ =
| |
− | <!-- Toshiba -->
| |
− | | process 4 fab = [[Toshiba]] / [[NEC]]
| |
− | | process 4 name =
| |
− | | process 4 date =
| |
− | | process 4 lith = 193 nm
| |
− | | process 4 immersion = Yes
| |
− | | process 4 exposure = DP
| |
− | | process 4 wafer type = Bulk
| |
− | | process 4 wafer size = 300 mm
| |
− | | process 4 transistor = Planar
| |
− | | process 4 volt = 1 V
| |
− | | process 4 layers =
| |
− | | process 4 delta from = [[40 nm]] Δ
| |
− | | process 4 gate len =
| |
− | | process 4 gate len Δ =
| |
− | | process 4 cpp = 120 nm
| |
− | | process 4 cpp Δ =
| |
− | | process 4 mmp = 100 nm
| |
− | | process 4 mmp Δ =
| |
− | | process 4 sram hp =
| |
− | | process 4 sram hp Δ =
| |
− | | process 4 sram hd = 0.124 µm²
| |
− | | process 4 sram hd Δ =
| |
− | | process 4 sram lv =
| |
− | | process 4 sram lv Δ =
| |
− | | process 4 dram =
| |
− | | process 4 dram Δ =
| |
− | <!-- IBM SOI -->
| |
− | | process 5 fab = [[Common Platform Alliance]] (SOI)<info>[[IBM]], [[Freescale]], [[AMD]]</info>
| |
− | | process 5 name =
| |
− | | process 5 date =
| |
− | | process 5 lith = 193 nm | |
− | | process 5 immersion = Yes | |
− | | process 5 exposure = DP
| |
− | | process 5 wafer type = SOI
| |
− | | process 5 wafer size = 300 mm
| |
− | | process 5 transistor = Planar
| |
− | | process 5 volt = 1 V
| |
− | | process 5 layers = 11
| |
− | | process 5 delta from = [[45 nm]] Δ
| |
− | | process 5 gate len = 25 nm
| |
− | | process 5 gate len Δ =
| |
− | | process 5 cpp = 130 nm
| |
− | | process 5 cpp Δ =
| |
− | | process 5 mmp = 100 nm
| |
− | | process 5 mmp Δ =
| |
− | | process 5 sram hp =
| |
− | | process 5 sram hp Δ =
| |
− | | process 5 sram hd = 0.149 µm²
| |
− | | process 5 sram hd Δ =
| |
− | | process 5 sram lv =
| |
− | | process 5 sram lv Δ =
| |
− | | process 5 dram = 0.039 µm²
| |
− | | process 5 dram Δ =
| |
| }} | | }} |
− | | + | {{scrolling table/mid}} |
| + | |- |
| + | ! colspan="2" | Common Platform <info>[[IBM]], [[Freescale]], [[AMD]]</info> !! colspan="2" | [[Intel]] !! colspan="2" | [[TSMC]] !! colspan="2" | [[Samsung]] !! colspan="2" | [[Toshiba]] / NEC !! colspan="2" | Common Platform 2<info>[[IBM]], [[STMicroelectronics]], [[Frescale]], [[Chartered]], [[Infineon]]</info> |
| + | |- style="text-align: center;" |
| + | | colspan="2" | || colspan="2" | P1268 || colspan="2" | || colspan="2" | || colspan="2" | || colspan="2" | |
| + | |- style="text-align: center;" |
| + | | colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2009 || colspan="2" | 2010 |
| + | |- style="text-align: center;" |
| + | | colspan="2" | PDSOI || colspan="10" | Bulk |
| + | |- style="text-align: center;" |
| + | | colspan="12" | 300mm |
| + | |- |
| + | ! Value !! [[45 nm]] Δ !! Value !! [[45 nm]] Δ !! Value !! [[40 nm]] Δ || Value !! [[40 nm]] Δ || Value !! [[40 nm]] Δ || Value !! [[45 nm]] Δ |
| + | |- |
| + | | 130 nm || 0.68x || 112.5 nm || 0.63x || 130 nm || 0.80x || 113.4 nm || 0.88x || 120 nm || 0.71x || 126 nm || 0.66x |
| + | |- |
| + | | ? nm || ?x || 112.5 nm || 0.70x || ? nm || ?x || 113.4 nm || 0.97x || ? nm || ?x || ?nm || ?x |
| + | |- |
| + | | 0.15 µm<sup>2</sup> || 0.41x || 0.171 µm<sup>2</sup> || 0.63x || 0.15 µm<sup>2</sup> || 0.62x || 0.120 µm<sup>2</sup> || ?x || 0.124 µm<sup>2</sup> || 0.64x || 0.157 µm<sup>2</sup> || 0.42x |
| + | |- |
| + | | 0.039 µm<sup>2</sup> || 0.58x |
| + | {{scrolling table/end}} |
| === Design Rules === | | === Design Rules === |
| {| class="wikitable collapsible collapsed" | | {| class="wikitable collapsible collapsed" |
| |- | | |- |
− | ! colspan="5" | Intel 32nm Design Rules | + | ! colspan="4" | Intel 32nm Design Rules |
| |- | | |- |
− | ! Layer !! Pitch !! Thick !! Aspect Ratio !! Image | + | ! Layer !! Pitch !! Thick !! Aspect Ratio |
| |- | | |- |
− | | Isolation || 140 nm || 200 || - || rowspan="12" | [[file:intel 32nm design rules.png|750px]] | + | | Isolation || 140 nm || 200 || - |
| |- | | |- |
| | Contacted Gate || 112.5 nm || 35 nm || -- | | | Contacted Gate || 112.5 nm || 35 nm || -- |
Line 171: |
Line 65: |
| |- | | |- |
| | Metal 9 || 19.4 µm || 8 µm || 1.5 | | | Metal 9 || 19.4 µm || 8 µm || 1.5 |
− | |-
| |
− | | Bump || 145.9 µm || 25.5 µm || -
| |
| |} | | |} |
− |
| |
| == Find models == | | == Find models == |
| {{#ask: | | {{#ask: |
Line 205: |
Line 96: |
| ** {{intel|Xeon E5}} | | ** {{intel|Xeon E5}} |
| ** {{intel|Xeon E7}} | | ** {{intel|Xeon E7}} |
| + | |
| + | |
| * UC Davis | | * UC Davis |
| ** {{ucdavis|KiloCore}} | | ** {{ucdavis|KiloCore}} |
Line 210: |
Line 103: |
| ** {{Princeton|Piton}} | | ** {{Princeton|Piton}} |
| | | |
| + | {{expand list}} |
| + | |
| + | == 32 nm System on Chips== |
| {{expand list}} | | {{expand list}} |
| | | |
| == 32 nm Microarchitectures == | | == 32 nm Microarchitectures == |
− | * AMD
| + | * Intel: |
− | ** {{amd|Bulldozer|l=arch}}
| + | ** {{intel|Saltwell}} |
− | ** {{amd|Piledriver|l=arch}}
| + | ** {{intel|Sandy Bridge}} |
− | * IBM
| + | ** {{intel|Westmere}} |
− | ** {{ibm|z12|l=arch}}
| |
− | * Intel | |
− | ** {{intel|Saltwell|l=arch}} | |
− | ** {{intel|Sandy Bridge|l=arch}} | |
− | ** {{intel|Westmere|l=arch}} | |
| | | |
| {{expand list}} | | {{expand list}} |
− |
| |
− | == Documents ==
| |
− | * [[:File:samsung foundry solution 28-32nm.pdf|Samsung foundry solution for 32 & 28 nm]]
| |
− |
| |
− | == References ==
| |
− | * Greene, B., et al. "High performance 32nm SOI CMOS with high-k/metal gate and 0.149 µm 2 SRAM and ultra low-k back end with eleven levels of copper." VLSI Technology, 2009 Symposium on. IEEE, 2009.
| |
− | * Jan, C-H., et al. "A 32nm SoC platform technology with 2 nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009.
| |
− | * Wu, Shien-Yang, et al. "A 32nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.
| |
− | * Chen, X., et al. "A cost effective 32nm high-K/metal gate CMOS technology for low power applications with single-metal/gate-first process." VLSI Technology, 2008 Symposium on. IEEE, 2008.
| |
− | * Diaz, C. H., et al. "32nm gate-first high-k/metal-gate technology for high performance low power applications." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
| |
− | * Natarajan, S., et al. "A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm 2 SRAM cell size in a 291Mb array." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
| |
− | * Hasegawa, S., et al. "A cost-conscious 32nm CMOS platform technology with advanced single exposure lithography and gate-first metal gate/high-k process." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
| |
− | * Arnaud, F., et al. "32nm general purpose bulk CMOS technology for high performance applications at low voltage." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008.
| |
− | * Pilo, Harold, et al. "A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation enabled by stability, write-ability and read-ability enhancements." IEEE Journal of Solid-State Circuits 47.1 (2012): 97-106.
| |
− |
| |
− | [[category:lithography]]
| |