From WikiChip
Editing number system

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 2: Line 2:
 
A '''number system''' is a mathematical notation for representing numbers of a given [[number set|set]]. They are the foundation for conveying, quantifying, and manipulating [[data]].
 
A '''number system''' is a mathematical notation for representing numbers of a given [[number set|set]]. They are the foundation for conveying, quantifying, and manipulating [[data]].
  
Number systems are mainly classified according to [[number notation|notations]] ([[positional notation]] vs [[sign-value notation]]) and their [[base]]. Today, we largely use the [[Arabic numerals]] which is a [[base-10]] positional notation numbering system. Machines on the other hand may use a different number system - such as the [[binary number system]].
+
Number systems are mainly classified according to [[number notation|notations]] ([[positional notation]] vs [[sign-value notation]]) and their [[base]]. Today, we largely use the [[Arabic numerals]] which is a [[base-10]] positional notation numbering system. Machines on the other hand may use a different number system - such as the [[base-2]].
  
 
== Notation ==
 
== Notation ==
Line 43: Line 43:
 
</math>
 
</math>
  
=== Binary Number System ===
+
=== Decimal Number System ===
 
{{main|binary}}
 
{{main|binary}}
 
In the binary number system, the [[radix]] is 2 - i.e. a number system capable of only representing two discrete values: <math>\{0,1\}</math>. Let's consider the following number <math>10101110.011_{2}</math>. Note that the subscript is ''2''. We can express this [[binary number]] in polynomial form as follows:
 
In the binary number system, the [[radix]] is 2 - i.e. a number system capable of only representing two discrete values: <math>\{0,1\}</math>. Let's consider the following number <math>10101110.011_{2}</math>. Note that the subscript is ''2''. We can express this [[binary number]] in polynomial form as follows:

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

Template used on this page: