From WikiChip
Editing intel/process

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
{{intel title|Process Technology History}}
+
{{intel title|Process Technology}}
This article details '''[[Intel]]'s [[semiconductor process technology]]''' history for research and posterity.
+
This article details '''[[Intel]]'s [[Semiconductor Process Technology]]''' history for research and posterity.
  
== Overview ==
 
 
The table below shows the history of Intel's process scaling. Values were taken from various Intel documents including IDF presentations, ISSCC papers, and IEDM papers. Note that while a great deal of effort was put into ensuring the accuracy of the values, some numbers vary to a small degree between Intel's own documents and therefore discrepancies may exist. [[SRAM]] bitcell areas refer to a high-density 6T bitcell with the exception of the very first few processes where smaller cell designs were used. Additionally, the metal layer count is for the client dies (example consumer mobile & desktop); server models utilize considerably more layers. Finally, from the [[45 nm]] node, Intel has switched to utilizing a [[high-κ]] material, therefore the oxide thickness shown refers to the [[equivalent oxide thickness]] instead.
 
The table below shows the history of Intel's process scaling. Values were taken from various Intel documents including IDF presentations, ISSCC papers, and IEDM papers. Note that while a great deal of effort was put into ensuring the accuracy of the values, some numbers vary to a small degree between Intel's own documents and therefore discrepancies may exist. [[SRAM]] bitcell areas refer to a high-density 6T bitcell with the exception of the very first few processes where smaller cell designs were used. Additionally, the metal layer count is for the client dies (example consumer mobile & desktop); server models utilize considerably more layers. Finally, from the [[45 nm]] node, Intel has switched to utilizing a [[high-κ]] material, therefore the oxide thickness shown refers to the [[equivalent oxide thickness]] instead.
 
== Nomenclature ==
 
Intel has been using the same naming scheme for decades. All process technologies (including packaging technologies) begin with a 'P' followed by the [[wafer size]] and the process ID. Generally, the process ID is an auto-increment value with odd values generally reserved for SoC and I/O (low power) devices while the even values have been used for Intel premier line of high-performance processors.
 
 
[[File:intel process naming scheme.svg|400px]]
 
 
  
 
== Timeline ==
 
== Timeline ==
Line 21: Line 14:
 
[[File:intel 90nm 32nm yield.png|250px|thumb|[[90 nm]] to [[32 nm]]]]
 
[[File:intel 90nm 32nm yield.png|250px|thumb|[[90 nm]] to [[32 nm]]]]
 
[[File:intel scaling from 45nm to 10nm.png|250px|thumb|Intel scaling from [[45 nm]] to [[10 nm]]]]
 
[[File:intel scaling from 45nm to 10nm.png|250px|thumb|Intel scaling from [[45 nm]] to [[10 nm]]]]
[[File:intel scaling roadmap to 5nm.png|250px|thumb|Intel roadmap from [[10 nm]] to [[5 nm]] and an advance packaging roadmap.]]
 
 
<div style="overflow-x: scroll; white-space: nowrap; min-width: 300px" class="scrollable">
 
<div style="overflow-x: scroll; white-space: nowrap; min-width: 300px" class="scrollable">
 
<table class="wikitable" style="text-align: center;">
 
<table class="wikitable" style="text-align: center;">
 
<tr><th>Year</th><th>Process</th><th>[[technology node|Node]]</th><th>MLayers</th><th>µarchs</th><th>Gate</th><th>Interconnects</th><th colspan="4">Attributes</th></tr>
 
<tr><th>Year</th><th>Process</th><th>[[technology node|Node]]</th><th>MLayers</th><th>µarchs</th><th>Gate</th><th>Interconnects</th><th colspan="4">Attributes</th></tr>
{{intel proc tech |year=1972 |name=PMOS I |mlayers=1 |node=10 µm
 
  |archs=4004
 
  |a1=Gate Dielectric |d1=SiO<sub>2</sub>
 
  |a2=L<sub>g</sub>  |d2=10.0 µm
 
}}
 
{{intel proc tech |year=1974 |name=HMOS I |mlayers=1 |node=8 µm
 
  |archs=
 
  |a1=Gate Dielectric |d1=SiO<sub>2</sub>
 
  |a2=L<sub>g</sub>  |d2=8.0 µm
 
}}
 
{{intel proc tech |year=1976 |name=HMOS II/III |mlayers=1 |node=6 µm
 
  |archs=8080
 
  |a1=Gate Dielectric |d1=SiO<sub>2</sub>
 
  |a2=L<sub>g</sub>  |d2=6.0 µm
 
}}
 
 
{{intel proc tech |year=1977 |name=CHMOS I |mlayers=1 |node=3 µm
 
{{intel proc tech |year=1977 |name=CHMOS I |mlayers=1 |node=3 µm
 
   |archs=8085, 8086, 8088, 80186
 
   |archs=8085, 8086, 8088, 80186
Line 72: Line 49:
 
   |a1=T<sub>ox</sub> |d1=15 nm    |a12=Gate Dielectric |d12=SiO<sub>2</sub>
 
   |a1=T<sub>ox</sub> |d1=15 nm    |a12=Gate Dielectric |d12=SiO<sub>2</sub>
 
   |a2=V<sub>dd</sub> |d2=4 V      |a22=SRAM            |d22=111 µm²
 
   |a2=V<sub>dd</sub> |d2=4 V      |a22=SRAM            |d22=111 µm²
   |a3=L<sub>g</sub>  |d3=800 nm
+
   |a3=L<sub>g</sub>  |d3=800 µm
 
   |a4=CPP            |d4=1.7 µm    |a42=MMP            |d42=2 µm
 
   |a4=CPP            |d4=1.7 µm    |a42=MMP            |d42=2 µm
 
}}
 
}}
Line 79: Line 56:
 
   |a1=T<sub>ox</sub> |d1=8 nm      |a12=Gate Dielectric |d12=SiO<sub>2</sub>
 
   |a1=T<sub>ox</sub> |d1=8 nm      |a12=Gate Dielectric |d12=SiO<sub>2</sub>
 
   |a2=V<sub>dd</sub> |d2=3.3 V    |a22=SRAM            |d22=
 
   |a2=V<sub>dd</sub> |d2=3.3 V    |a22=SRAM            |d22=
   |a3=L<sub>g</sub>  |d3=600 nm
+
   |a3=L<sub>g</sub>  |d3=600 µm
 
   |a4=CPP            |d4=          |a42=MMP            |d42=1.4 µm
 
   |a4=CPP            |d4=          |a42=MMP            |d42=1.4 µm
 
}}
 
}}
Line 129: Line 106:
 
   |a4=CPP            |d4=336 nm    |a42=MMP            |d42=345 nm
 
   |a4=CPP            |d4=336 nm    |a42=MMP            |d42=345 nm
 
}}
 
}}
{{intel proc tech |year=2003 |name=P1262 (CPU)<br>P1263 (SoC, I/O) |mlayers=7 |node=90 nm
+
{{intel proc tech |year=2003 |name=P1262 |mlayers=7 |node=90 nm
 
   |xtor img=intel 90nm gate.png
 
   |xtor img=intel 90nm gate.png
 
   |interconnects img=intel_90nm_gate_interconnect.png
 
   |interconnects img=intel_90nm_gate_interconnect.png
Line 138: Line 115:
 
   |a4=CPP            |d4=260 nm    |a42=MMP            |d42=220 nm
 
   |a4=CPP            |d4=260 nm    |a42=MMP            |d42=220 nm
 
}}
 
}}
{{intel proc tech |year=2005 |name=P1264 (CPU)<br>P1265 (SoC, I/O) |mlayers=8 |node=65 nm
+
{{intel proc tech |year=2005 |name=P1264 |mlayers=8 |node=65 nm
 
   |xtor img=intel 65nm gate.png
 
   |xtor img=intel 65nm gate.png
 
   |interconnects img=intel_65nm_gate_interconnect.png
 
   |interconnects img=intel_65nm_gate_interconnect.png
Line 147: Line 124:
 
   |a4=CPP            |d4=220 nm    |a42=MMP            |d42=210 nm
 
   |a4=CPP            |d4=220 nm    |a42=MMP            |d42=210 nm
 
}}
 
}}
{{intel proc tech |year=2007 |name=P1266 (CPU)<br>P1267 (SoC, I/O) |mlayers=9 |node=45 nm
+
{{intel proc tech |year=2007 |name=P1266 |mlayers=9 |node=45 nm
 
   |xtor img=intel 45nm gate.png
 
   |xtor img=intel 45nm gate.png
 
   |interconnects img=intel_45nm_gate_interconnects.png
 
   |interconnects img=intel_45nm_gate_interconnects.png
Line 156: Line 133:
 
   |a4=CPP            |d4=160 nm    |a42=MMP            |d42=180 nm
 
   |a4=CPP            |d4=160 nm    |a42=MMP            |d42=180 nm
 
}}
 
}}
{{intel proc tech |year=2009 |name=P1268 (CPU)<br>P1269 (SoC, I/O) |mlayers=10 |node=32 nm
+
{{intel proc tech |year=2009 |name=P1268 |mlayers=10 |node=32 nm
 
   |xtor img=intel 32nm gate.png
 
   |xtor img=intel 32nm gate.png
 
   |interconnects img=intel 32nm gate interconnect.png
 
   |interconnects img=intel 32nm gate interconnect.png
 
   |archs=Westmere, Sandy Bridge
 
   |archs=Westmere, Sandy Bridge
   |a1=T<sub>oxe</sub>|d1=1 nm      |a12=Gate Dielectric |d12=High-κ
+
   |a1=T<sub>oxe</sub>|d1=           |a12=Gate Dielectric |d12=High-κ
 
   |a2=V<sub>dd</sub> |d2=0.75 V    |a22=SRAM            |d22=0.148 µm²
 
   |a2=V<sub>dd</sub> |d2=0.75 V    |a22=SRAM            |d22=0.148 µm²
 
   |a3=L<sub>g</sub>  |d3=30 nm
 
   |a3=L<sub>g</sub>  |d3=30 nm
 
   |a4=CPP            |d4=112.5 nm  |a42=MMP            |d42=112.5 nm
 
   |a4=CPP            |d4=112.5 nm  |a42=MMP            |d42=112.5 nm
 
}}
 
}}
{{intel proc tech |year=2011 |name=P1270 (CPU)<br>P1271 (SoC, I/O) |mlayers=11 |node=22 nm
+
{{intel proc tech |year=2011 |name=P1270 |mlayers=11 |node=22 nm
 
   |xtor img=intel 22nm gate.png
 
   |xtor img=intel 22nm gate.png
 
   |interconnects img=intel 22nm gate interconnect.png
 
   |interconnects img=intel 22nm gate interconnect.png
 
   |archs=Ivy Bridge, Haswell
 
   |archs=Ivy Bridge, Haswell
   |a1=T<sub>oxe</sub>|d1=0.9 nm    |a12=Gate Dielectric |d12=High-κ
+
   |a1=T<sub>oxe</sub>|d1=           |a12=Gate Dielectric |d12=High-κ
 
   |a2=V<sub>dd</sub> |d2=0.75 V    |a22=SRAM            |d22=0.092 µm²
 
   |a2=V<sub>dd</sub> |d2=0.75 V    |a22=SRAM            |d22=0.092 µm²
 
   |a3=L<sub>g</sub>  |d3=26 nm
 
   |a3=L<sub>g</sub>  |d3=26 nm
Line 176: Line 153:
 
   |a6=W<sub>''fin''</sub>      |d6=8 nm      |a62=H<sub>''fin''</sub> |d62=34 nm
 
   |a6=W<sub>''fin''</sub>      |d6=8 nm      |a62=H<sub>''fin''</sub> |d62=34 nm
 
}}
 
}}
{{intel proc tech |year=2014 |name=P1272 (CPU)<br>P1273 (SoC, I/O) |mlayers=12 |node=14 nm
+
{{intel proc tech |year=2014 |name=P1272 |mlayers=11 |node=14 nm
 
   |xtor img=intel 14nm gate top.png
 
   |xtor img=intel 14nm gate top.png
 
   |interconnects img=intel 14nm gate interconnect.png
 
   |interconnects img=intel 14nm gate interconnect.png
   |archs=Broadwell, Skylake, Kaby Lake, Coffee Lake, Cascade Lake, Comet Lake, Cooper Lake, Rocket Lake
+
   |archs=Broadwell, Skylake, Kaby Lake, Coffee Lake
 
   |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=High-κ
 
   |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=High-κ
 
   |a2=V<sub>dd</sub> |d2=0.70 V    |a22=SRAM            |d22=0.0499 µm²
 
   |a2=V<sub>dd</sub> |d2=0.70 V    |a22=SRAM            |d22=0.0499 µm²
Line 185: Line 162:
 
   |a4=CPP            |d4=70 nm      |a42=MMP            |d42=52 nm
 
   |a4=CPP            |d4=70 nm      |a42=MMP            |d42=52 nm
 
   |a5=P<sub>''fin''</sub>      |d5=42 nm
 
   |a5=P<sub>''fin''</sub>      |d5=42 nm
   |a6=W<sub>''fin''</sub>      |d6=8 nm      |a62=H<sub>''fin''</sub> |d62=42-46 nm
+
   |a6=W<sub>''fin''</sub>      |d6=8 nm      |a62=H<sub>''fin''</sub> |d62=42 nm
 
}}
 
}}
{{intel proc tech |year=2019 |name=P1274 (CPU)<br>P1275 (SoC, I/O) |mlayers=12-13 |node=10 nm
+
{{intel proc tech |year=2017 |name=P1274 |mlayers= |node=10 nm
   |archs=Cannon Lake, Ice Lake, Tiger Lake, Alder Lake, Sapphire Rapids, Raptor Lake, Emerald Rapids
+
   |archs=Cannonlake, Icelake, Tigerlake
 
   |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=High-κ
 
   |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=High-κ
 
   |a2=V<sub>dd</sub> |d2=0.70 V    |a22=SRAM            |d22=0.0312 µm²
 
   |a2=V<sub>dd</sub> |d2=0.70 V    |a22=SRAM            |d22=0.0312 µm²
   |a3=L<sub>g</sub>  |d3=18 nm
+
   |a3=L<sub>g</sub>  |d3=18 nm ?
 
   |a4=CPP            |d4=54 nm      |a42=MMP            |d42=36 nm
 
   |a4=CPP            |d4=54 nm      |a42=MMP            |d42=36 nm
 
   |a5=P<sub>''fin''</sub>      |d5=34 nm
 
   |a5=P<sub>''fin''</sub>      |d5=34 nm
   |a6=W<sub>''fin''</sub>      |d6=7 nm      |a62=H<sub>''fin''</sub> |d62=44-55 nm
+
   |a6=W<sub>''fin''</sub>      |d6=5 nm      |a62=H<sub>''fin''</sub> |d62=53 nm
 
}}
 
}}
{{intel proc tech |year=2021 |name=P1276 (CPU)<br>P1277 (SoC, I/O) |mlayers= |node=7 nm
+
{{intel proc tech |year=2019 |name=P1276 |mlayers= |node=7 nm
  |archs=Meteor Lake, Granite Rapids
 
|archs=
 
  |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=
 
  |a2=V<sub>dd</sub> |d2=    |a22=SRAM            |d22=
 
  |a3=L<sub>g</sub>  |d3=
 
  |a4=CPP            |d4=    |a42=MMP          |d42=
 
  |a5=P<sub>''fin''</sub>      |d5=
 
  |a6=W<sub>''fin''</sub>      |d6=      |a62=H<sub>''fin''</sub> |d62=
 
 
}}
 
}}
{{intel proc tech |year=2024 |name=P1278 (CPU)<br>P1279 (SoC, I/O) |mlayers= |node=5 nm
+
{{intel proc tech |year=2022 |name=P1278 |mlayers= |node=5 nm
|archs=
 
  |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=
 
  |a2=V<sub>dd</sub> |d2=    |a22=SRAM            |d22=
 
  |a3=L<sub>g</sub>  |d3=
 
  |a4=CPP            |d4=    |a42=MMP          |d42=
 
  |a5=P<sub>''fin''</sub>      |d5=
 
  |a6=W<sub>''fin''</sub>      |d6=      |a62=H<sub>''fin''</sub> |d62=
 
}}
 
{{intel proc tech |year=2027 |name=P1280 (CPU)<br>P1281 (SoC, I/O) |mlayers= |node=3 nm
 
|archs=
 
  |a1=T<sub>oxe</sub>|d1=          |a12=Gate Dielectric |d12=
 
  |a2=V<sub>dd</sub> |d2=    |a22=SRAM            |d22=
 
  |a3=L<sub>g</sub>  |d3=
 
  |a4=CPP            |d4=    |a42=MMP          |d42=
 
  |a5=P<sub>''fin''</sub>      |d5=
 
  |a6=W<sub>''fin''</sub>      |d6=      |a62=H<sub>''fin''</sub> |d62=
 
 
}}
 
}}
 
</table>
 
</table>
Line 228: Line 181:
  
 
== SRAM Scaling ==
 
== SRAM Scaling ==
For Intel, from [[2 µm]] to [[10 nm]], SRAM 6T [[bit cells]] have had an average shrink of 0.496x in an attempt to maintain [[Moore's Law]] double density observation/requirement. Note that SRAM shrunk more significantly prior to the [[65 nm process]] node. It should also be noted that logic typically scales better than the typical 6T SRAM cells, so raw logic density scaled more over time. Nonetheless, the size of the SRAM can be as much as three to four times the density of the typical logic cell.
+
For Intel, from [[2 µm]] to [[10 nm]], SRAM 6T [[bit cells]] have had an average shrink of 0.496x in an attempt to maintain [[Moore's Law]] double density observation/requirement. Note that SRAM shrunk more significantly prior to the [[65 nm process]] node. It should also be noted that logic typically scales better than the typical 6T SRAM cells, so raw logic density scaled more over time.
  
  
 
[[File:intel sram bit cell scaling.png|900px]]
 
[[File:intel sram bit cell scaling.png|900px]]
 
== Other processes ==
 
{{other processes list}}
 
 
== See also ==
 
* {{intel|Copy Exactly!}}
 
 
[[Category:intel]]
 

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)