From WikiChip
Editing amd/microarchitectures/zen 2

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 437: Line 437:
 
The width of a L3 cache line is 64 bytes. The data path between the L3 and L2 caches is 32 bytes wide. AMD did not disclose the size of miss buffers. Processors based on the Zen/Zen+ microarchitecture support 50 outstanding misses per core from L2 to L3, 96 from L3 to memory.<!-- EPYC Tech Day 2017, ISSCC 2018. -->
 
The width of a L3 cache line is 64 bytes. The data path between the L3 and L2 caches is 32 bytes wide. AMD did not disclose the size of miss buffers. Processors based on the Zen/Zen+ microarchitecture support 50 outstanding misses per core from L2 to L3, 96 from L3 to memory.<!-- EPYC Tech Day 2017, ISSCC 2018. -->
  
Each CPU core is supported by a private L2 cache. The L3 cache is a victim cache filled from L2 victims of all four cores and exclusive of L2 unless the data in the L3 cache is likely being accessed by multiple cores, or is requested by an instruction fetch.(non-inclusive hierarchy)
+
Each CPU core is supported by a private L2 cache. The L3 cache is a victim cache filled from L2 victims of all four cores and exclusive of L2 unless the data in the L3 cache is likely being accessed by multiple cores, or is requested by an instruction fetch.
  
 
The L3 cache maintains shadow tags for all cache lines of each L2 cache in the CCX. This simplifies coupled fill/victim transactions between the L2 and L3 cache, and allows the L3 cache to act as a probe filter for requests between the L2 caches in the CCX, external probes and, taking advantage of its knowledge that a cache line shared by two or more L2 caches is exclusive to this CCX, probe traffic to the rest of the system. If a core misses in its L2 cache and the L3 cache, and the shadow tags indicate a hit in another L2 cache, a cache-to-cache transfer within the CCX is initiated. CCXs are not directly connected, even if they reside on the same die. Requests leaving the CCX pass through the scalable data fabric on the I/O die.
 
The L3 cache maintains shadow tags for all cache lines of each L2 cache in the CCX. This simplifies coupled fill/victim transactions between the L2 and L3 cache, and allows the L3 cache to act as a probe filter for requests between the L2 caches in the CCX, external probes and, taking advantage of its knowledge that a cache line shared by two or more L2 caches is exclusive to this CCX, probe traffic to the rest of the system. If a core misses in its L2 cache and the L3 cache, and the shadow tags indicate a hit in another L2 cache, a cache-to-cache transfer within the CCX is initiated. CCXs are not directly connected, even if they reside on the same die. Requests leaving the CCX pass through the scalable data fabric on the I/O die.

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameZen 2 +
core count4 +, 6 +, 8 +, 12 +, 16 +, 24 +, 32 + and 64 +
designerAMD +
first launchedJuly 2019 +
full page nameamd/microarchitectures/zen 2 +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerTSMC + and GlobalFoundries +
microarchitecture typeCPU +
nameZen 2 +
pipeline stages19 +