From WikiChip
Editing 7 nm lithography process

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 24: Line 24:
  
 
=== TSMC ===
 
=== TSMC ===
TSMC started mass production of its '''7-nanometer N7 node''' in April 2018. TSMC considers its 7-nanometer node a full node shrink over its 16-nanometer. Although TSMC has released a 10-nanometer node the year prior, the company considered its 10 nm to be a short-lived node and was intended to serve as a learning node on its way to 7. In early 2019 TSMC introduced the second version of its N7 process called '''N7P''' which provides additional performance enhancements. With the availability of [[asml/nxe|high-throughput EUV machines]] ready for mass production, TSMC introduced a third variant called '''N7+''' which uses EUV.
+
TSMC started mass production of its '''7-nanometer N7 node''' in April 2018. TSMC considers its 7-nanometer node a full node shrink over its 16-nanometer. Although TSMC has released a 10-nanometer node the year prior, the company considered its 10 nm to be a short-lived node and was intended to serve as a learning node on its way to 7. In early 2019 TSMC introduced the second version of its N7 process called '''N7P''' which provides additional performance enhancements. With the availability of {{asml|nxe|high-throughput EUV machines}} ready for mass production, TSMC introduced a third variant called '''N7+''' which uses EUV.
  
 
==== N7 ====
 
==== N7 ====

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)