From WikiChip
Editing 45 nm lithography process

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 3: Line 3:
  
 
== Industry ==
 
== Industry ==
In January of 2006 Intel announced that they've been able to fabricate the first fully functional [[SRAM]] chips on a 45 nm process. As a preview Intel showcased 45nm SRAM chip (shown below) packing more than 1 billion transistors. Intel opened 3 45 nm facilities, their initial {{intel|D1D}} facility in Oregon, {{intel|Fab 32}} in Arizona and {{intel|Fab 28}} in Israel. Intel's 45 nm process is the first time high-k + metal gate transistors was used in high-volume manufacturing process.
 
 
{{scrolling table/top|style=text-align: right; | first=Fab
 
{{scrolling table/top|style=text-align: right; | first=Fab
 
  |Process Name
 
  |Process Name
Line 18: Line 17:
 
{{scrolling table/mid}}
 
{{scrolling table/mid}}
 
|-
 
|-
! colspan="2" | [[Intel]] !! colspan="2" | [[Fujitsu]] !! colspan="2" | [[TI]] !! colspan="2" | [[Toshiba]] / [[Sony]] / [[NEC]]  !!  colspan="2" | [[Samsung]] !!  colspan="2" | [[IBM]] / [[Toshiba]] / [[Sony]] / [[AMD]]
+
! colspan="2" | [[Intel]] !! colspan="2" | [[Fujitsu]] !! colspan="2" | [[TI]] !! colspan="2" | [[Toshiba]] / [[Sony]] / [[NEC]] !!  colspan="2" | [[IBM]] / [[Toshiba]] / [[Sony]] / [[AMD]]
 
|- style="text-align: center;"
 
|- style="text-align: center;"
| colspan="2" | P1266 (CPU) / P1266.8 (SoC) / P1269 (SoC) || colspan="2" | CS-300 || colspan="2" | || colspan="2" | || colspan="2" | 11LP || colspan="2" |
+
| colspan="2" | P1266 || colspan="2" | CS-300 || colspan="2" | || colspan="2" | || colspan="2" |
 
|- style="text-align: center;"
 
|- style="text-align: center;"
| colspan="2" | 2006 || colspan="2" | 2008 || colspan="2" | 2008 || colspan="2" | 2006 || colspan="2" | 2007 || colspan="2" | 2007
+
| colspan="2" | 2007 || colspan="2" | 2008 || colspan="2" | 2008 || colspan="2" | 2006 || colspan="2" | 2007
 
|- style="text-align: center;"
 
|- style="text-align: center;"
| colspan="10" | Bulk || colspan="2" | PDSOI
+
| colspan="8" | Bulk || colspan="2" | PDSOI
 
|- style="text-align: center;"
 
|- style="text-align: center;"
| colspan="12" | 300mm
+
| colspan="10" | 300mm
 
|-
 
|-
! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ
+
! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ !! Value !! [[65 nm]] Δ
 
|-
 
|-
| 180 nm || 0.82x || 190 nm || ?x || ? nm || ?x || 180 nm || ?x || ? nm || ?x || 190 nm || 0.76x
+
| 180 nm || 0.82x || 190 nm || ?x || ? nm || ?x || 180 nm || ?x || 190 nm || 0.76x
 
|-
 
|-
| 160 nm || 0.76x || ? nm || ?x || ? nm || ?x || ? nm || ?x || ? nm || ?x || ? nm || ?x
+
| 160 nm || 0.76x || ? nm || ?x || ? nm || ?x || ? nm || ?x || ? nm || ?x
 
|-
 
|-
| 0.346 µm² || 0.61x || 0.225 µm² || ?x || 0.255 µm² || ?x || 0.248 µm² || ?x || 0.29 µm² || 0.54x || 0.370 µm² || 0.57x
+
| 0.346 µm<sup>2</sup> || 0.61x || 0.225 µm<sup>2</sup> || ?x || 0.255 µm<sup>2</sup> || ?x || 0.248 µm<sup>2</sup> || ?x || 0.370 µm<sup>2</sup> || 0.57x
 
|-
 
|-
| 0.3816 µm² || 0.56x || || || || || || || 0.359 µm² || 0.53x || ||
+
| &nbsp; || || || || || || || || ||
 
|-
 
|-
| || || || || || || || || 0.11 µm² || 0.58x || 0.067 µm² || 0.53x
+
| || || || || || || || || 0.067 µm<sup>2</sup> || 0.53x
 
{{scrolling table/end}}
 
{{scrolling table/end}}
=== Intel ===
+
=== Design Rules ===
<gallery widths=200px heights=300px>
 
File:45nm SRAM Cell.jpg|6T SRAM Bit-Cell
 
File:45nm SRAM photo.JPG|Die photo of an [[Intel]] [[45 nm]] shuttle test chip including 153 MiB [[SRAM]] and logic test circuits
 
File:45nm wafer photo 1.jpg|300 mm wafer with 45 nm shuttle test chips
 
File:45nm wafer photo 2.JPG|Intel engineer holding 300 mm wafer with 45 nm shuttle test chips
 
File:45nm-wafer-photo-3.jpg|Intel 300 mm wafer with 45 nm shuttle test chips
 
</gallery>
 
 
 
 
{| class="wikitable collapsible collapsed"
 
{| class="wikitable collapsible collapsed"
 
|-
 
|-
Line 83: Line 74:
 
** {{amd|Opteron}}
 
** {{amd|Opteron}}
 
** {{amd|Phenom II}}
 
** {{amd|Phenom II}}
* Freescale
 
** {{freescale|QorIQ}}
 
 
* IBM
 
* IBM
 
** {{ibm|Power7}}
 
** {{ibm|Power7}}
Line 103: Line 92:
 
** {{intel|Xeon}}
 
** {{intel|Xeon}}
  
{{expand list}}n Chips==
+
{{expand list}}
 +
 
 +
== 45 nm System on Chips==
 
{{expand list}}
 
{{expand list}}
  
 
== 45 nm Microarchitectures ==
 
== 45 nm Microarchitectures ==
 +
* Intel
 +
** {{intel|microarchitectures/bonnell|Bonnell}}
 +
** {{intel|microarchitectures/nehalem|Nehalem}}
 +
** {{intel|microarchitectures/penryn|Penryn}}
 
* AMD
 
* AMD
** {{amd|K10|l=arch}}
+
** {{amd|microarchitectures/k10|K10}}
* IBM
 
** {{ibm|z196|l=arch}}
 
* Intel
 
** {{intel|Bonnell|l=arch}}
 
** {{intel|Nehalem|l=arch}}
 
** {{intel|Penryn|l=arch}}
 
* VIA Technologies
 
** {{via|Isaiah|l=arch}}
 
  
 
{{expand list}}
 
{{expand list}}
 
== Documents ==
 
* [[:File:samsung foundry - 45, 65, 90 (August, 2007).pdf|Samsung foundry - 45 nm, 65 nm, 90 nm guide (August, 2007)]]
 
* Intel
 
** [[:File:45nmSummaryFoils.pdf|New Intel 45 nm Processors]]
 
** [[:File:Press45nm107 FINAL.pdf|High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors]]
 
** [[:File:SandToCircuit FINAL.pdf|From sand to circuits]]
 
 
== References ==
 
* Mistry, Kaizad, et al. "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.
 
 
[[category:lithography]]
 

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)