From WikiChip
Editing inverter

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 70: Line 70:
  
 
When the inverter's input is HIGH and the output is LOW, all the energy stored in the load capacitor is dissipated in the nMOS device because during that time the pMOS is cut off and the nMOS device is conducting. Therefore the energy dissipated in the nMOS device can be expressed as \( E_n = \frac{1}{2}C_LV_{DD}^2 \). During one complete switch cycle the total energy is the sum of both transistors: \( E_T = E_p + E_n = \frac{1}{2}C_LV_{DD}^2 + \frac{1}{2}C_LV_{DD}^2 = C_LV_{DD}^2 \). The power dissipated in terms of [[frequency]] can be expressed as \( E_T = P \centerdot t \); \( P = \frac{E_T}{t} \); \( P = fE_T \); \( P = fC_LV_{DD}^2 \). Which shows that the switching frequency and \( V_{DD}^2 \) are directly proportional to the [[power dissipation]] of a CMOS inverter. The dynamic capacitive power is \( P_{dyn} = C_LV_{DD}^2f \).
 
When the inverter's input is HIGH and the output is LOW, all the energy stored in the load capacitor is dissipated in the nMOS device because during that time the pMOS is cut off and the nMOS device is conducting. Therefore the energy dissipated in the nMOS device can be expressed as \( E_n = \frac{1}{2}C_LV_{DD}^2 \). During one complete switch cycle the total energy is the sum of both transistors: \( E_T = E_p + E_n = \frac{1}{2}C_LV_{DD}^2 + \frac{1}{2}C_LV_{DD}^2 = C_LV_{DD}^2 \). The power dissipated in terms of [[frequency]] can be expressed as \( E_T = P \centerdot t \); \( P = \frac{E_T}{t} \); \( P = fE_T \); \( P = fC_LV_{DD}^2 \). Which shows that the switching frequency and \( V_{DD}^2 \) are directly proportional to the [[power dissipation]] of a CMOS inverter. The dynamic capacitive power is \( P_{dyn} = C_LV_{DD}^2f \).
 
== VHDL Implementation ==
 
Below is a straightforward implementation of an inverter in VHDL. The single wire 'a' is the input and the single wire 'q' is the output.
 
<source lang="VHDL">
 
library ieee;
 
use ieee.std_logic_1164.all;
 
 
entity inverter is
 
    port ( a : in  std_logic;
 
          q : out  std_logic);
 
end inverter;
 
 
architecture behavioral of inverter is
 
begin
 
q <= not a;
 
end behavioral;
 
</source>
 
 
An inverter [[waveform]] for the code above might look like:
 
 
[[File:Not vhdl waveform.png]]
 
  
 
== Discrete chips ==
 
== Discrete chips ==

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)