From WikiChip
Editing movidius/microarchitectures/shave v2.0

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 105: Line 105:
 
Each SHAVE core has two [[load-store units]], each is capable of doing a single 64-bit operation per cycle from the SRAM tile.
 
Each SHAVE core has two [[load-store units]], each is capable of doing a single 64-bit operation per cycle from the SRAM tile.
  
Each SHAVE core has a local 128 KiB slice of SRAM the LSU operates on [[Movidius]] calls the  Connection MatriX (CMX) block. The cache is split between [[instruction cache|instruction]] and [[data cache|data]]. The exact amount is software configurable with a granularity of 8 KiB intervals. Each local cache tile is directly linked to two of its closest neighbors (presumably to the cores located to the west and to the east), allowing for zero-penalty accesses from those memory banks as well. For cache tiles located further on do have a slight latency penalty. Movidius noted that most of the software they've tested does almost all of its communication with its neighboring cores, allowing them to take advantage of this.
+
Each SHAVE core has a local 128 KiB slice of SRAM the LSU operates on. The cache is split between [[instruction cache|instruction]] and [[data cache|data]]. The exact amount is software configurable with a granularity of 8 KiB intervals. Each local cache tile is directly linked to two of its closest neighbors (presumably to the cores located to the west and to the east), allowing for zero-penalty accesses from those memory banks as well. For cache tiles located further on do have a slight latency penalty. Movidius noted that most of the software they've tested does almost all of its communication with its neighboring cores, allowing them to take advantage of this.
  
 
The entire chip also has a share 128 KiB of L2 cache and a integrated [[DDR2]] [[integrated memory controller|memory controller]] which is connected to an on-package stacked 8-64 MiB of [[SDRAM]].
 
The entire chip also has a share 128 KiB of L2 cache and a integrated [[DDR2]] [[integrated memory controller|memory controller]] which is connected to an on-package stacked 8-64 MiB of [[SDRAM]].

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameSHAVE v2.0 +
designerMovidius +
first launched2011 +
full page namemovidius/microarchitectures/shave v2.0 +
instance ofmicroarchitecture +
instruction set architectureSHAVE + and SPARC v8 +
manufacturerTSMC +
nameSHAVE v2.0 +
phase-out2014 +
process65 nm (0.065 μm, 6.5e-5 mm) +