From WikiChip
Editing intel/process-architecture-optimization

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
 
{{intel title|Process-Architecture-Optimization (PAO)}}
 
{{intel title|Process-Architecture-Optimization (PAO)}}
'''[[name::Process-Architecture-Optimization]]''' was a temporary [[instance of::development model]] introduced by [[Intel]] for their mainstream microprocessors in [[2016]] following the phase-out of their {{intel|Tick-Tock}} model as a result of major delays and challenges involving their [[10 nm process]].
+
'''[[name::Process-Architecture-Optimization]]''' is a [[instance of::development model]] introduced by [[Intel]] for their mainstream microprocessors in [[2016]] following the phase-out of their {{intel|Tick-Tock}} model as a result of major delays and challenges involving their [[10 nm process]].
  
 
Under the Process-Architecture-Optimization Model:
 
Under the Process-Architecture-Optimization Model:
  
* '''Process''' -  With each process, Intel advances their manufacturing [[process technology]] in line with [[Moore's Law]]. Each new process introduces higher transistor density and generally a plethora of other advantages such as higher performance and lower power consumption. During a "process", Intel retrofits their {{intel|microarchitectures|previous}} [[microarchitecture]] to the new process which inherently yields better performance and energy saving. During a "process", usually, just a few features and improvements are introduced.
+
* '''Process''' -  With each process, Intel advances their manufacturing [[process technology]] in line with [[Moore's Law]]. Each new process introduces higher transistor density and a generally a plethora of other advantages such as higher performance and lower power consumption. During a "process", Intel retrofits their {{intel|microarchitectures|previous}} [[microarchitecture]] to the new process which inherently yields better performance and energy saving. During a "process", usually just a few features and improvements are introduced.
  
 
* '''Architecture''' - With each architecture, Intel uses the their latest manufacturing [[process technology]] from their "process" to manufacture a newly designed [[microarchitecture]]. The new microarchitecture is designed with the new process in mind and typically introduces Intel's newest big features and functionalities. New [[instruction set|instructions]] are often added during this cycle stage.
 
* '''Architecture''' - With each architecture, Intel uses the their latest manufacturing [[process technology]] from their "process" to manufacture a newly designed [[microarchitecture]]. The new microarchitecture is designed with the new process in mind and typically introduces Intel's newest big features and functionalities. New [[instruction set|instructions]] are often added during this cycle stage.
  
* '''Optimization''' - With each optimization, Intel improves upon their {{intel|microarchitectures|previous}} microarchitecture by introducing incremental improvements and enhancements without introducing any large charges. Additionally, the process itself enjoys various refinements as it matures. (For example with {{intel|Kaby Lake|l=arch}}, an optimized process called "14 nm+" is used. The enhanced process had a number of transistor-level modifications done to it (e.g. taller fins) allowing for higher frequency at identical voltage levels.)
+
* '''Optimization''' - With each optimization, Intel improves upon their {{intel|microarchitectures|previous}} microarchitecture by introducing incremental improvements and enhancements without introducing any large charges. Additionally the process itself enjoys various refinements as it matures. (For example with {{intel|Kaby Lake|l=arch}}, an optimized process called "14 nm+" is used. The enhanced process had a number of transistor-level modifications done to it (e.g. taller fins) allowing for higher frequency at identical voltage levels.)
  
 
== Roadmap ==
 
== Roadmap ==

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
instance ofdevelopment model +
nameProcess-Architecture-Optimization +