From WikiChip
Editing intel/loihi

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 67: Line 67:
  
 
==== Self-learning ====
 
==== Self-learning ====
Each core contains a "learning engine" (marked in the block diagram above as 'learning') that can be programmed to adapt to the network parameters during operation such as the spike timings and their impact. It does this by updating the synaptic weights using the 4-bit microcode-programmed learning rules that are specifically associated with that synapse. Updates (or 'learning') is done at each learning epoch, a period of time that is globally preconfigured per core. This makes the chip more flexible as it allows various paradigms such as supervisor/non-supervisor and reinforcing/reconfigurability without requiring any particular approach. The choice for higher flexibility is intentional in order to defer various architectural decisions that could be detrimental to research.
+
Each core also contains a "learning engine" (marked in the block diagram above as 'learning') that can be programmed to adapt to the network parameters during operation such as the spike timings and their impact. It does this by updating the synaptic weights using the 4-bit microcode-programmed learning rules that are specifically associated with that synapse. Updates (or 'learning') is done at each learning epoch, a period of time that is globally preconfigured per core. This makes the chip more flexible as it allows various paradigms such as supervisor/non-supervisor and reinforcing/reconfigurability without requiring any particular approach. The choice for higher flexibility is intentional in order to defer various architectural decisions that could be detrimental to research.
  
 
===== Programming =====
 
===== Programming =====

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
Facts about "Loihi - Intel"
back imageFile:loihi (back).png +
core voltage (max)1.25 V (12.5 dV, 125 cV, 1,250 mV) +
core voltage (min)0.5 V (5 dV, 50 cV, 500 mV) +
designerIntel +
die area60 mm² (0.093 in², 0.6 cm², 60,000,000 µm²) +
first announcedSeptember 25, 2017 +
first launchedJanuary 2018 +
full page nameintel/loihi +
instance ofneuromorphic chip +
ldateJanuary 2018 +
main imageFile:loihi (front).png +
manufacturerIntel +
market segmentArtificial Intelligence +
max cpu count16,384 +
nameLoihi +
neuron count131,072 +
process14 nm (0.014 μm, 1.4e-5 mm) +
smp max ways16,384 +
synapse count130,000,000 +
technologyCMOS +
transistor count2,070,000,000 +