From WikiChip
Editing equivalent oxide thickness

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
 
{{title|Equivalent Oxide Thickness (EOT)}}{{confuse|oxide thickness|l1=Oxide Thickness (t<sub>OX</sub>)}}
 
{{title|Equivalent Oxide Thickness (EOT)}}{{confuse|oxide thickness|l1=Oxide Thickness (t<sub>OX</sub>)}}
'''Equivalent Oxide Thickness''' ('''EOT'''), represented by <code>t<sub>eq</sub></code> or <code>t<sub>OX</sub></code>, is the [[gate oxide thickness]] of the SiO<sub>2</sub> layer of a [[transistor]] that would be required to achieve similar capacitance density as the [[high-κ]] material used.
+
'''Equivalent Oxide Thickness''' ('''EOT'''), represented by <code>t<sub>eq</sub></code> or <code>t<sub>OXE</sub></code>, is the [[gate oxide thickness]] of the SiO<sub>2</sub> layer of a [[transistor]] that would be required to achieve similar capacitance density as the [[high-κ]] material used.
  
 
A [[gate dielectric]] with a [[dielectric constant]] that is substantially higher than that of SiO<sub>2</sub> will initially have a much smaller equivalent electrical thickness. This key feature allowed for the industry to continue on with [[Moore's Law]]. As the semiconductor industry began to experiment with transitioning from a SiO<sub>2</sub> gate oxide to a [[high-κ]] material, EOT can be used to quickly compare those materials using existing SiO<sub>2</sub>-based models.
 
A [[gate dielectric]] with a [[dielectric constant]] that is substantially higher than that of SiO<sub>2</sub> will initially have a much smaller equivalent electrical thickness. This key feature allowed for the industry to continue on with [[Moore's Law]]. As the semiconductor industry began to experiment with transitioning from a SiO<sub>2</sub> gate oxide to a [[high-κ]] material, EOT can be used to quickly compare those materials using existing SiO<sub>2</sub>-based models.

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

Templates used on this page: