From WikiChip
Editing cavium/microarchitectures/vulcan

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 203: Line 203:
  
 
=== Memory subsystem ===
 
=== Memory subsystem ===
Vulcan's memory subsystem deals with the loads and store requests and ordering. There are two [[load-store units]] each capable of moving 128-bit of data - double the bandwidth of the XLP II. The widening of the units was done in order to more efficiently support operations such as the Load Pair (<code>LDP</code>) and Store Pair (<code>STP</code>) instructions. In addition to the LSUs, there is a new dedicated Store Address unit. Similar to Intel's older architectures, the store operation is cracked into two distinct operations - a store address operation used to calculate the effective address and finally the store data operation. Vulcan can issue a store to the Store Address unit before the data is available where the address can be calculated and [[memory ordering conflicts]] can be detected. Once the data is ready, the operation will be reissued to the LSU. The [[store buffer]] is 36-entry deep with the [[load buffer]] at 64-entries for a total of 100 [[simultaneous memory operations]] in-flight or roughly 55% of all µOPs. Note that the store buffer is considerably smaller than the load buffer because Vulcan can only sustain a single store operation per cycle as most workloads do far more loads than stores.
+
Vulcan's memory subsystem deals with the loads and store requests and ordering. There are two [[load-store units]] each capable of moving 128-bit of data - double the bandwidth of the XLP II. The widening of the units was done in order to more efficiently support operations such as the Load Pair (<code>LDP</code>) and Store Pair (<code>STP</code>) instructions. In addition to the LSUs, there is a new dedicated Store Address unit. Similar to Intel's older architectures, the store operation is cracked into two distinct operations - a store address operation used to calculate the effective address and finally the store data operation. Vulcan can issue a store to the Store Address unit before the data is available where the address can be calculated and [[memory ordering conflicts]] can be detected. Once the data is ready, the operation will be reissued to the LSU. The [[store buffer]] is 36-entry deep with the [[load buffer]] at 64-entries for a total of 100 [[simultaneous memory operations]] in-flight or roughly 55% of all µOPs. Note that the store buffer is considerably smaller than the load buffer because Vulcan can only sustain a single load operation per cycle as most workloads do far more loads than stores.
  
 
Vulcan's L2 cache is 256 KiB, half that of prior design, and has an [[L2]] to [[L1]] bandwidth of 64 bytes per cycle in either direction. There is a 1 MiB L3 cache per core arranged as 2 MiB slices for a total of 32 MiB of cache shared by the entire chip. The L3 is [[exclusive cache]], filling up with evicted L2 cache lines.
 
Vulcan's L2 cache is 256 KiB, half that of prior design, and has an [[L2]] to [[L1]] bandwidth of 64 bytes per cycle in either direction. There is a 1 MiB L3 cache per core arranged as 2 MiB slices for a total of 32 MiB of cache shared by the entire chip. The L3 is [[exclusive cache]], filling up with evicted L2 cache lines.

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameVulcan +
core count16 +, 20 +, 24 +, 28 +, 30 + and 32 +
designerCavium + and Broadcom +
first launched2018 +
full page namecavium/microarchitectures/vulcan +
instance ofmicroarchitecture +
instruction set architectureARMv8.1 +
manufacturerTSMC +
microarchitecture typeCPU +
nameVulcan +
pipeline stages (max)15 +
pipeline stages (min)13 +
process16 nm (0.016 μm, 1.6e-5 mm) +