From WikiChip
Editing cavium/microarchitectures/vulcan

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 182: Line 182:
 
Each cycle, up to four instructions are sent to the [[instruction decode|decoder]]. In prior design, [[Broadcom]]'s products decoded [[MIPS]] instructions. With Vulcan, the switching to ARM meant the decoder had to be replaced with much more complex logic that decodes the original [[instruction]] and emits [[micro-ops]]. For the most part, there is a 1:1 mapping between instructions and µOP with an average of 15% more µOPs emitted from instructions. The extra complexity has added another pipeline stage to the decode.
 
Each cycle, up to four instructions are sent to the [[instruction decode|decoder]]. In prior design, [[Broadcom]]'s products decoded [[MIPS]] instructions. With Vulcan, the switching to ARM meant the decoder had to be replaced with much more complex logic that decodes the original [[instruction]] and emits [[micro-ops]]. For the most part, there is a 1:1 mapping between instructions and µOP with an average of 15% more µOPs emitted from instructions. The extra complexity has added another pipeline stage to the decode.
 
==== Loop Buffer ====
 
==== Loop Buffer ====
Sitting between the [[instruction decode|decoder]] and the [[instruction scheduler|scheduler]] is a 128-entry [[loop buffer]]. The loop buffer, in conjunction with the [[branch predictor]], will queue recent tight loop operations. The buffer will play back the operations repeatedly until a branch take occurs. When this takes place, the front-end (instruction fetch, decode, etc..) is largely power-gated in order to save power.
+
Sitting between the [[instruction decode|decoder]] and the [[instruction scheduler|scheduler]] is a [[loop buffer]]. The loop buffer, in conjunction with the [[branch predictor]], will queue recent tight loop operations. The buffer will play back the operations repeatedly until a branch take occurs. When this takes place, the front-end (instruction fetch, decode, etc..) is largely power-gated in order to save power. Although Broadcom originally told us the buffer was had 48-entries, when the product was re-released by [[Cavium]] in late 2018, WikiChip was unable to confirm this number.
  
 
=== Execution engine ===
 
=== Execution engine ===

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
codenameVulcan +
core count16 +, 20 +, 24 +, 28 +, 30 + and 32 +
designerCavium + and Broadcom +
first launched2018 +
full page namecavium/microarchitectures/vulcan +
instance ofmicroarchitecture +
instruction set architectureARMv8.1 +
manufacturerTSMC +
microarchitecture typeCPU +
nameVulcan +
pipeline stages (max)15 +
pipeline stages (min)13 +
process16 nm (0.016 μm, 1.6e-5 mm) +