From WikiChip
Editing amd/packages/socket sp3

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 35: Line 35:
 
|contemporary 3 link=amd/packages/socket swrx8
 
|contemporary 3 link=amd/packages/socket swrx8
 
}}
 
}}
 +
 
'''Socket SP3''' is a microprocessor socket designed by [[AMD]] for the first three generations of their {{amd|EPYC}} family of high performance server processors. It supports eight channels of [[DDR4]] memory and eight 16-lane PCIe I/O links. Socket SP3 succeeded {{\\|Socket G34}} and was superseded by {{\\|Socket SP5}}.
 
'''Socket SP3''' is a microprocessor socket designed by [[AMD]] for the first three generations of their {{amd|EPYC}} family of high performance server processors. It supports eight channels of [[DDR4]] memory and eight 16-lane PCIe I/O links. Socket SP3 succeeded {{\\|Socket G34}} and was superseded by {{\\|Socket SP5}}.
  
Line 46: Line 47:
 
Socket SP3 is a zero insertion force, screw actuated, [[wikipedia:Surface-mount technology|surface-mount]] [[land grid array]] socket for use with a 4094-contact, 1.00 mm × 0.87 mm interstitial pitch, organic land grid array CPU package.
 
Socket SP3 is a zero insertion force, screw actuated, [[wikipedia:Surface-mount technology|surface-mount]] [[land grid array]] socket for use with a 4094-contact, 1.00 mm × 0.87 mm interstitial pitch, organic land grid array CPU package.
  
It supports eight channels of 72-bit [[DDR4]] memory with up to 2 DIMMs per channel, eight 16-lane PCIe Gen 3/4 I/O links, three or four of which are repurposed as inter-socket links on dual socket systems, four USB 3.1 Gen 1 ports, and up to 32 SATA Gen 3 ports.
+
It supports eight channels of 72-bit [[DDR4]] memory with up to 2 DIMMs per channel, eight 16-lane PCIe Gen 3/4 I/O links, three or four of which are repurposed as inter-socket links on dual socket systems, four USB 3.1/3.2 ports, and up to 32 SATA Gen 3 ports.
  
This compares to four [[DDR3]] channels and five [[HyperTransport]] links on its predecessor {{\\|Socket G34}}, while the newer {{\\|Socket SP5}} supports 12 channels of [[DDR5]] memory, eight PCIe Gen 5 links, and four USB 3.2 Gen 1 ports. ({{\\|SP4|SP4 and SP4r2}} are [[ball grid array]] packages of {{amd|epyc embedded#3000 Series (Zen)|EPYC 3000}} embedded processors.)
+
This compares to four [[DDR3]] channels and five [[HyperTransport]] links on its predecessor {{\\|Socket G34}}, while the newer {{\\|Socket SP5}} supports 12 channels of [[DDR5]] memory, eight PCIe Gen 5 links, and four USB 3.2 ports. ({{\\|SP4|SP4 and SP4r2}} are [[ball grid array]] packages of {{amd|epyc embedded#3000 Series (Zen)|EPYC 3000}} embedded processors.)
  
 
The following AMD processor families use Socket SP3:
 
The following AMD processor families use Socket SP3:
Line 115: Line 116:
 
[[file:Socket SP3 2P routing.svg|DIMM order and 2P xGMI links]]
 
[[file:Socket SP3 2P routing.svg|DIMM order and 2P xGMI links]]
  
On dual socket (2P) systems the cache coherent xGMI links connect the Data Fabrics of each processor. Type-0 processors use four links, each attached to one die on the package, creating a NUMA system with three memory distances and one or two hops between any two dies. Type-1/2 processors can use three or four xGMI links depending on bandwidth requirements, all connected to the central I/O die. xGMI links use 16 lanes, unused links release 16 lanes per socket for I/O. The integrated {{abbr|SMU}} dynamically adjusts the link width (number of active lanes) for power saving.<!--Burd2018--> The {{abbr|WAFL}} link, one or two lanes, connect the Control Fabrics on each processor, i.e. the {{abbr|PSP}}, SMUs and other IPs, primarily for temperature monitoring, power and frequency control. Four socket systems are not supported although the available resources do not seem to rule this out.
+
On dual socket (2P) systems the cache coherent xGMI links connect the Data Fabrics on each processor. Type-0 processors use four links, each attached to one die on the package, creating a NUMA system with three memory distances and one or two hops between any two dies. Type-1/2 processors can use three or four xGMI links depending on bandwidth requirements, all connected to the central I/O die. xGMI links use 16 lanes, unused links release 16 lanes per socket for I/O. The integrated {{abbr|SMU}} dynamically adjusts the link width (number of active lanes) for power saving.<!--Burd2018--> The {{abbr|WAFL}} link, one or two lanes, connect the Control Fabrics on each processor, i.e. the {{abbr|PSP}}, SMUs and other IPs, primarily for temperature monitoring, power and frequency control. Four socket systems are not supported although the available resources do not seem to rule this out.
  
 
Type-0 processors support DDR4-2666 memory and PCIe Gen 3 (8&nbsp;GT/s) on their I/O links. Type-1/2 processors support DDR4-3200 memory and PCIe Gen 4 (16&nbsp;GT/s), with xGMI links reaching 18&nbsp;GT/s. Optimized motherboards are required to realize these data rates. Accordingly Type-1 processors can only run at restricted rates on Type-0 boards, after a BIOS update providing compatible firmware. Type-2 processors are not supported on first generation EPYC boards. Conversely EPYC 7001 "Naples" processors are incompatible with dual socket boards implementing only three xGMI links.
 
Type-0 processors support DDR4-2666 memory and PCIe Gen 3 (8&nbsp;GT/s) on their I/O links. Type-1/2 processors support DDR4-3200 memory and PCIe Gen 4 (16&nbsp;GT/s), with xGMI links reaching 18&nbsp;GT/s. Optimized motherboards are required to realize these data rates. Accordingly Type-1 processors can only run at restricted rates on Type-0 boards, after a BIOS update providing compatible firmware. Type-2 processors are not supported on first generation EPYC boards. Conversely EPYC 7001 "Naples" processors are incompatible with dual socket boards implementing only three xGMI links.
Line 249: Line 250:
 
** Type-1/2: Unused lanes are available for I/O, e.g. to attach a {{abbr|BMC}}
 
** Type-1/2: Unused lanes are available for I/O, e.g. to attach a {{abbr|BMC}}
  
* 4 × USB 1.1, 2.0, 3.1 Gen 1 (5 Gb/s) ports
+
* Four USB ports
 +
** Type-0 processors: 4 × USB 1.1, 2.0, 3.1 Gen 1 (5 Gb/s)
 +
** Type-1/2 processors: 4 × USB 1.1, 2.0, 3.2 Gen 1, [[wikipedia:USB 3.0#USB 3.2|2×1]] (10 Gb/s)
  
 
* Low speed interfaces (some sharing pins):
 
* Low speed interfaces (some sharing pins):
Line 307: Line 310:
  
 
== Socket Diagrams ==
 
== Socket Diagrams ==
[[File:Socket SP3 housing diag.svg]]
 
 
Socket SP3 housing (AMD). The 4094 contact springs are not shown. All dimensions in millimeters.<br/> [[:File:Socket SP3 FIT housing diag.svg|Foxconn version]].
 
 
 
[[File:Socket SP3 PCB layout.svg]]
 
[[File:Socket SP3 PCB layout.svg]]
  
Line 1,199: Line 1,198:
 
|{{vanchor|CORETYPE}}||||Processor Core Type Indicator; NC = Not connected, VSS = connected to VSS on the package<br/><table class="wikitable"><tr><th>Processor</th><th>CORETYPE</th></tr><tr><td>SP3 Type-0</td><td>VSS</td></tr><tr><td>SP3 Type-1/2</td><td>NC</td></tr><tr><td>{{\\|Socket TR4|TR4}}/{{\\|Socket sTRX4|sTRX4}}/{{\\|Socket sWRX8|sWRX8}}</td><td>NC</td></tr></table><!--AMD-55414-1.10 Sec 11.5.2; AMD-55809-1.03 Tbl 35; AMD-56724-1.00 Tbl 42 & Sec 9.5; AMD-56437-1.01 Tbl 49-->
 
|{{vanchor|CORETYPE}}||||Processor Core Type Indicator; NC = Not connected, VSS = connected to VSS on the package<br/><table class="wikitable"><tr><th>Processor</th><th>CORETYPE</th></tr><tr><td>SP3 Type-0</td><td>VSS</td></tr><tr><td>SP3 Type-1/2</td><td>NC</td></tr><tr><td>{{\\|Socket TR4|TR4}}/{{\\|Socket sTRX4|sTRX4}}/{{\\|Socket sWRX8|sWRX8}}</td><td>NC</td></tr></table><!--AMD-55414-1.10 Sec 11.5.2; AMD-55809-1.03 Tbl 35; AMD-56724-1.00 Tbl 42 & Sec 9.5; AMD-56437-1.01 Tbl 49-->
 
|-
 
|-
|{{vanchor|SP3R1}}, {{vanchor|SP3R2}}||||Processor Family Revision Identifier (electrical keying); NC = Not connected, VSS = connected to VSS on the package<br/><table class="wikitable"><tr><th>Processor</th><th>SP3R1</th><th>SP3R2</th></tr><tr><td>SP3</td><td>NC</td><td>VSS</td></tr><tr><td>TR4</td><td>NC</td><td>NC</td></tr><tr><td>sTRX4</td><td>VSS</td><td>NC</td></tr><tr><td>sWRX8</td><td>NC</td><td>VSS</td></tr></table><!--AMD-55414-1.10 Sec 11.5.3; AMD-55809-1.03 Tbl 35 & Sec 11.4; AMD-56724-1.00 Tbl 42; AMD-56437-1.01 Tbl 49-->
+
|{{vanchor|SP3R1}}, SP3R2||||Processor Family Revision Identifier (electrical keying); NC = Not connected, VSS = connected to VSS on the package<br/><table class="wikitable"><tr><th>Processor</th><th>SP3R1</th><th>SP3R2</th></tr><tr><td>SP3</td><td>NC</td><td>VSS</td></tr><tr><td>TR4</td><td>NC</td><td>NC</td></tr><tr><td>sTRX4</td><td>VSS</td><td>NC</td></tr><tr><td>sWRX8</td><td>NC</td><td>VSS</td></tr></table><!--AMD-55414-1.10 Sec 11.5.3; AMD-55809-1.03 Tbl 35 & Sec 11.4; AMD-56724-1.00 Tbl 42; AMD-56437-1.01 Tbl 49-->
 
|-
 
|-
 
|CPU_PRESENT_L||||CPU Presence Indicator, connected to VSS on the package
 
|CPU_PRESENT_L||||CPU Presence Indicator, connected to VSS on the package

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)
designerAMD +
first announcedMay 16, 2017 +
first launchedJune 20, 2017 +
instance ofpackage +
market segmentServer +
microarchitectureZen +, Zen 2 + and Zen 3 +
nameSocket SP3 +
packageSP3 + and FCLGA-4094 +
package contacts4,094 +
package height6.26 mm (0.246 in) +
package length75.4 mm (7.54 cm, 2.969 in) +
package pitch0.87 mm (0.0343 in) + and 1 mm (0.0394 in) +
package typeFC-OLGA +
package width58.5 mm (5.85 cm, 2.303 in) +
socketSP3 + and LGA-4094 +
tdp120 W (120,000 mW, 0.161 hp, 0.12 kW) +, 155 W (155,000 mW, 0.208 hp, 0.155 kW) + and 180 W (180,000 mW, 0.241 hp, 0.18 kW) +