From WikiChip
Editing amd/microarchitectures/zen

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 479: Line 479:
 
==== Memory Subsystem ====
 
==== Memory Subsystem ====
 
[[File:amd zen hc28 memory.png|300px|right]]
 
[[File:amd zen hc28 memory.png|300px|right]]
Loads and Stores are conducted via the two AGUs which can operate simultaneously. Zen has a 44-entry Load Queue and a 44-entry Store Queue. Taking the two 14-entry deep AGU schedulers into account, the processor can keep up to 72 out-of-order loads in flight (same as Intel's {{intel|Skylake|l=arch}}). Zen employs a split TLB-data pipe design which allows TLB tag access to take place while the data cache is being fed in order to determine if the data is available and send their address to the L2 to start prefetching early on. Zen is capable of up to two loads per cycle (2x16B each) and up to one store per cycle (1x16B). The L1 TLB is 64-entry for all page sizes and the L2 TLB is a 1536-entry with no 1 GiB pages.
+
Loads and Stores are conducted via the two AGUs which can operate simultaneously. Zen has a much larger load queue capable of supporting 72 out-of-order loads (same as Intel's {{intel|Skylake|l=arch}}). There is also a 44-entry Store Queue. Zen employs a split TLB-data pipe design which allows TLB tag access to take place while the data cache is being fed in order to determine if the data is available and send their address to the L2 to start prefetching early on. Zen is capable of up to two loads per cycle (2x16B each) and up to one store per cycle (1x16B). The L1 TLB is 64-entry for all page sizes and the L2 TLB is a 1536-entry with no 1 GiB pages.
  
 
Zen incorporates a 64 KiB 4-way set associative L1 instruction cache and a 32 KiB 8-way set associative L1 data cache. Both the instruction cache and the data cache can fetch from the L2 cache at 32 Bytes per cycle. The L2 cache is a 512 KiB 8-way set associative unified cache, inclusive, and private to the core. The L2 cache can fetch and write 32B/cycle into the 8MB L3 cache (32B in either direction each cycle, i.e. bidirectional bus).
 
Zen incorporates a 64 KiB 4-way set associative L1 instruction cache and a 32 KiB 8-way set associative L1 data cache. Both the instruction cache and the data cache can fetch from the L2 cache at 32 Bytes per cycle. The L2 cache is a 512 KiB 8-way set associative unified cache, inclusive, and private to the core. The L2 cache can fetch and write 32B/cycle into the 8MB L3 cache (32B in either direction each cycle, i.e. bidirectional bus).

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)

This page is a member of 1 hidden category:

codenameZen +
core count4 +, 6 +, 8 +, 16 +, 24 +, 32 + and 12 +
designerAMD +
first launchedMarch 2, 2017 +
full page nameamd/microarchitectures/zen +
instance ofmicroarchitecture +
instruction set architecturex86-64 +
manufacturerGlobalFoundries +
microarchitecture typeCPU +
nameZen +
pipeline stages19 +
process14 nm (0.014 μm, 1.4e-5 mm) +